Simulation of Effects of Inward-Rectifier K⁺ Current on the Automaticity of Human Ventricular Tissue

Yue Zhang¹, Kuanquan Wang¹, Henggui Zhang¹², Yongfeng Yuan¹

¹ School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
² School of Physics and Astronomy, University of Manchester, Manchester, UK

Abstract

Inward-rectifier K⁺ current (I_{K1}) is a major current in ventricular myocytes, which contributes both to the fourth phase of repolarization and setting the resting membrane potential. The down-regulation of I_{K1} could induce automaticity in human ventricular myocytes. An idealized 2D human ventricular tissue was designed in this paper, which was 100 cells in length and 400 cells in width. The effects of I_{K1} were both investigated on single ventricular cell and the tissue. The experimental results demonstrated that the lower the I_{K1}, the higher the automatic rhythm. The autorhythmicity increased with the decreasing of I_{K1}. The tissue was controlled by the automatic rhythm when I_{K1} was less enough; in contrast, it was controlled by the sinus rhythm when I_{K1} was larger than a critical value.

1. Introduction

Under normal condition, the main automatic cells of heart are sinoatrial node cells called pacemaker cells, which initiate the heartbeat, determine the heart rate and control the blood circulation [1]. Other potential automatic cells are Pukinje fiber cells and atrioventricular cells. However, on pathological case, atrium and ventricle may also generate spontaneous electrical excitation. Nuss et al. tested that delayed repolarization in dog ventricular cells which influenced by I_{K1} increased the likelihood to initiate abnormal automaticity [2].

There is no I_{K1}, which is encoded by Kir2 gene family [3], in sinoatrial node cells, while it is intensely expressed in atrium and ventricle. Mika et al. surmised that the pacemaker activity in atrium and ventricle may be repressed by I_{K1}. Producing dominant-negative inhibition of Kir2-encoded inward-rectifier potassium channels, they made experiments on guinea-pig left ventricular myocytes, and observed the spontaneous action potential when I_{K1} was suppressed below 0.4 picoamps per picofarad. At this moment, ventricular myocytes showed like the pacemaker cells. Namely, the heartbeat was caused to begin from ventricles [4]. In 2005, Benson et al. modeled the I_{K1} induced automaticity in modified virtual ventricular cells and tissues of Luo-Rudy model [5].

Ypey et al. also found that I_{K1} was one of the main currents which play an important role in depolarization-induced automaticity of rat ventricular cardiomyocytes [6]. By removing the genes encoding Kir2.1 and Kir2.2 from mice, Zaritsky et al. investigated the molecular basis for murine I_{K1}. They discovered that Kir2.1 was essential in the generation of I_{K1}, and Kir2.2 could also contribute to the native I_{K1}. Kir2.1⁻⁺ ventricular myocytes showed more frequent spontaneous action potential than wild-type myocytes [7].

On one hand, the repression of I_{K1} could result in abnormal automaticity in ventricular tissue which may cause ventricular arrhythmias. Clinically, patients may be subjected to frequent episodes of ventricular arrhythmias when there are mutations in the channel subunits [8]. Tristani-Firouzi et al. established that mutations in KCNJ2 which encodes Kir2.1 cause Andersen syndrome whose typical character is cardiac arrhythmias [9]. On the other hand, the autorhythmicity of ventricle induced by suppression of I_{K1} could convert the myocytes to pacemaker cells. Biological pacemakers may be created [4] in the similar way to replace the electrical pacemakers which have disadvantage like the need for monitoring and replacement, possibility of infection and so on [10]. As a consequence, the research of down-regulation of I_{K1} is important in investigating cardiac arrhythmia.

Polyamines, Mg²⁺ and Ba²⁺ from the intracellular space into the pore are all blockers of I_{K1} channel. Spermine and spermidine are the most potent blockers [11]. However, there are lack of I_{K1}-special drugs to block the current channels and meanwhile don’t effect on other channels. For instance, 10⁻⁵ M KB-R7943 could completely abolish I_{K1}, but carbacholine-induced inward rectifier (I_{KACH}) is more sensitive to KB-R7943 [12]. So gene transfer is applied to manipulate Kir2.1 expression. Mika et al. used Kir2.1-AAA dominant-negative construct to suppress endogenous I_{K1} [13]. In this way, other channels are not influenced when I_{K1} is suppressed.

In this paper, down-regulation of I_{K1} was modulated by scaling the maximum conductance of the current G_{K1}.
which was varied from zero. The action potential (AP) of single cell and wave propagation in virtual human ventricular were both simulated. Electrocardiograms (ECG) under different Gk1 were also obtained. The results demonstrated that automaticity occured when Gk1 was less enough. The autorhythmicity increased with the decreasing of Gk1. The sinus rhythm lose the control of the ventricular tissue when Gk1 was less than a fixed value, and the ventricular rhythm was determined by the automaticity induced by the suppression of Ik1.

2. Methods

2.1. Models of ventricular myocytes and tissue

To simulate the human ventricular single cell and tissue, TNNP 2006 model [14] was used. The wave propagation model was given by the following equation.

\[
\frac{dV}{dt} = - \frac{I_{ion} + I_{stim}}{C_m} + D \Delta V
\]

(1)

\[
\frac{\partial V}{\partial t} = - \frac{I_{ion} + I_{stim}}{C_m} + D \Delta V
\]

(2)

In the both two equations,

\(I_{ion} = I_{Na} + I_{K1} + I_{Kp} + I_{Ks} + I_{Cal} + I_{NaCa} + I_{NaK} + I_{pK} + I_{pCa} + I_{DGa} + I_{bNa}\)

where, \(V\) is the transmembrane potential; \(I_{ion}\) is the sum of all the transmembrane ion currents; \(I_{stim}\) is the external stimulus current; \(C_m\) is membrane capacitance per unit surface area; \(D\) is the diffusion tensor describing the conductivity of the tissue; \(\Delta\) is the Laplace operator. \(I_k\) are the corresponding currents in the original model. Except Gk1, all the other parameters keep the same as in original paper.

2.2. Tissue setting

The virtual human ventricular tissue size was set 100 cells in length and 400 cells in width, which from left to right was divided into endocardial region, mid-myocardial part and epicardial layer with the proportion of 25%, 35% and 40%.

The value of Gk1 was increased from 0 by the step 0.01 nS/pF. For each Gk1, the single cell’s APs of the three kinds of myocytes were simulated first. Then the excitation propagation was calculated and at last the pseudo ECGs were obtained.

3. Results

Simulation results were shown in this section.

3.1. Action potential of single cell

From Figure 1, we could see the typical character of the automatic APs was that all the curves lose the tip upstrokes. And the shape of the APs was similar to the sinoatrial cells’. What’s more, the figure demonstrated that the automatic period elongated with the increase of Gk1. When Gk1=0 nS/pF, the period was about 750ms; the period was about 780ms when Gk1=0.1 nS/pF; and the period was around 826ms when Gk1=0.2 nS/pF.

3.2. Propagation of automatic excitation in tissue

For each Gk1, we simulated the excitation propagation in the tissue on two cases. Case 1: excitation was initiated from the left three volumes of endocardial cells stimulated for 1ms per 800ms. Case 2: the initial excited cells were only stimulated once for 1ms at 10ms. The propagations were more or less similar at macroscopic level for different Gk1 when autorhythmicity generated. As a result, only propagations for Gk1=0.1 nS/pF were given in details in Figure 2 for case 2 and Figure 3 for case 1. As a comparison, the normal propagation was listed in Figure 4. Figures 2, 3 and 4 showed the snapshots of the activation pattern across the tissue model at varying timings.
condition while it began from right to left when G_{K1} was repressed. That’s, the depolarization generated earlier in epicardium than in endocardium when ventricular tissue was in automaticity. This also meant that the automatic period of epicardial cells was shorter than that of endomyocytes. The shorter period made the depolarization earlier; as a consequence, the repolarization was also earlier than other cells.

There was no significant difference in corresponding cases of Figures 2 and 3, which demonstrated that the sinus rhythm almost didn’t play a role in a stronger automaticity. The ventricular rhythm was controlled by the autorhythmicity.

3.3. Pseudo ECG

ECG was an important tool to inspect the cardiac function. In the study, pseudo ECG was calculated when electrical excitation was propagating in human ventricular tissue for all the cases.

Figure 5 described the pseudo ECG on case 1 and case 2 when $G_{K1}=0.1 \text{ nS/pF}$. All the actual time for the two curves was greater than 17 000ms. We changed the abscissa to compare conveniently.

From Figure 5, we could observe that the shape of ECG for case 1 and case 2 was almost the same, with the period about 785ms, from which we inferred that the sinus rhythm lose the control of the ventricle. An obvious character of the two curves was that there are no R waves replaced by inverted waves we called “R” waves here. On normal case, depolarization began from endocardial cells to epicardium and generated the positive R waves. However, under lower I_{K1} conditions, the depolarization generated from the epicardium; together with the formula calculating pseudo ECG, the minus “R” waves could be explained.

Using the same method as in Figure 5, we could get the ECGs for $G_{K1}=0.1 \text{ nS/pF}$. Macrocosmically, the trend of the curves was similar to that in Figure 5 and the frequency of the autorhythmicity was higher with a period about 760ms.

Figure 6 showed the ECGs for $G_{K1}=0.2 \text{ nS/pF}$ and normal condition. All the actual time for the three curves was greater than 26 000ms.
These demonstrated that low IK1 decreased the conduction long QT, low R waves, low T waves and long QRS.

with the increasing of IK1. The autorhythmicity increased enough while sinus rhythm regained to control the tissue tissue was under automatic rhythm when IK1 was small.

61571165 and NO. 61572152. Science Foundation of China (NSFC) under Grant No.

61571165 and NO. 61572152. Science Foundation of China (NSFC) under Grant No.

845ms when GK1=0.2 nS/pF and around 785ms when =0.1 nS/pF. These meant that the automatic frequency became faster when GK1=0.2 nS/pF.

These meant that the automatic frequency became faster when GK1=0.2 nS/pF. The autorhythmicity disappeared when GK1>0.22 nS/pF. The period was accurately 800ms the same as the sinus period. IK1 lose the dominant capacity in pacing when GK1=0.2 nS/pF while it was about 760ms when GK1=0 nS/pF.

It was especially noted that the endomycardial cells lose the automaticity when GK1>0.22 nS/pF in our simulation, however, the bifurcation point gotten by Tong et al. was GK1 ≈ 0.05 * 5.405 ≈ 0.27 nS/pF [16]. Why the simulation was different from this analysis? That’s because the local stability of the equilibrium closely depended on the original values. In other words, the TNNP 2006 model was a locally stable system, so the model’s generating automaticity or not rest with the original values of the model to some extent.

4. Discussion and conclusion

The effect of IK1 on the virtual human ventricular tissue was investigated in this paper. The automaticity of the tissue was simulated. We found that the autormythricity disappeared when GK1>0.22 nS/pF. The lower the IK1 was, the stronger the automaticity acted. The tissue was under automatic rhythm when IK1 was small enough while sinus rhythm regained to control the tissue with the increasing of IK1. The autorhythmicity increased with the decreasing of IK1. The automatic period was about 845ms when GK1=0.2 nS/pF and around 785ms when =0.1 nS/pF while it was about 760ms when GK1=0 nS/pF. These meant that the automatic frequency became faster when IK1 was down-regulated.

It was especially noted that the endomyocardial cells lose the automaticity when GK1>0.22 nS/pF in our simulation, however, the bifurcation point gotten by Tong et al. was GK1 ≈ 0.05 * 5.405 ≈ 0.27 nS/pF [16]. Why the simulation was different from this analysis? That’s because the local stability of the equilibrium closely depended on the original values. In other words, the TNNP 2006 model was a locally stable system, so the model’s generating automaticity or not rest with the original values of the model to some extent.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61571165 and NO. 61572152.

References

Address for correspondence.

Kuanquan Wang
Mailbox 332, Harbin Institute of Technology
Harbin 150001, China
wangkq@hit.edu.cn