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Abstract

In CinC2015 we have shown that the dynamics of
the action potential (AP) repolarization could be tracked
throughout the stimulation course. Despite some valuable
outcomes, the populations of interest (control, Ctrl, and
streptozotocin-induced, STZ, diabetic mice) could not be
significantly distinguished in term of dynamics because
of the global extracted feature. In this study, the com-
putation of new features for each repolarization percent-
age allows an accurate and meaningful characterization
of the two groups leading to a significant classification.
APs in isolated left ventricular cardiomyocytes obtained
from Ctrl and STZ mice were measured by patch-clamp.
The progressive changes in AP repolarization for individ-
ual cells were tested on a set of 100 consecutive excita-
tions at 2Hz pacing rate. The corresponding repolariza-
tions are stacked in a matrix decomposed with a new ap-
proach. Observations are modeled as a sum of vectors
multiplied by specific polynomial functions. This approach
is similar to the Singular Value Decomposition (SVD), but
the corresponding scalars are replaced by these functions.
Model unknowns are estimated by using an alternated
least square algorithm. Finally, the mean of the polyno-
mial first derivative is computed for each repolarization
percentage as a representative feature. A Wilcoxon signed
rank test (p<0.05) has been applied on the features from
the two groups. We can observe a significant difference in
the late repolarization phase (70%-95% repolarization),
with a singular behavior in correspondence with the AP
profile shoulder onset (80%).

1. Introduction

The duration of the action potential (AP) in cardiomy-
ocytes is an important variable controlling the electrical
properties of the normal and pathological myocardium.
Prolongation of the AP in myocytes may represent the ba-

sis for the increased risk of arrhythmia with diabetes [1],
but the determinants of these abnormalities remain to be
elucidated. We have shown in [2] that the diabetic condi-
tion is associated with alterations in the temporal dynam-
ics of the AP profile in myocytes, a factor that may orig-
inate electrical instability. This assessment has been per-
formed by using statistics computed over APs associated
to isolated left ventricular myocytes obtained from control
(Ctrl)and streptozotocin-induced (STZ) diabetic mice. In
[3], these statistical properties (mean and variance) have
been replaced by the analysis of the temporal dynamics of
the repolarization phase. It has been shown that the two
groups could be partly distinguished by introducing a new
automatic analysis based on a transformation of each AP.

The objective of this paper is not restricted to only fully
distinguish the two groups but also to produce additional
predictive information on the ionic currents involved in
the observed differences. For instance, if the groups are
significantly different at specific percentages of repolariza-
tion, it implies that ionic currents active in these membrane
potential ranges are affected by the hyperglycemic condi-
tion. To achieve this task, we introduced a new decom-
position method, well adapted to the observation, based on
the aforementioned AP transformation. It is shown that the
proposed approach succeeded in distinguishing the electri-
cal behavior of the two groups of cells, corroborating the
impact of diabetes on repolarizing Kv currents.

2. Material

A group of female C57Bl/6 mice between 3 and
4.4 months of age was studied in accordance with the
Guide for Care and Use of Laboratory Animals; experi-
ments were approved by the local animal care committee
(IACUC). Hyperglycemia was induced by injecting ani-
mals with streptozotocin (Sigma, concentration 5 mg/L)
for approximately one week. Blood glucose levels were
measured 6-10 days after the last injection of STZ. Mice
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with blood glucose concentration higher than 400 mg/dl
were ascribed to the diabetic group. Furthermore, we ex-
amined only animals at less than 1 month after the onset of
hyperglycemia, so as to minimize the interference of other
factors (e.g., structural or mechanical changes) on myocar-
dial electrical activity.

A set of 41 cells was isolated from left ventricle in 14
control mice, whereas the STZ group consisted of 76 cells
obtained from 10 animals. Isolated cardiomyocytes were
placed in a bath of Tyrode solution on the stage of an IX53
(Olympus) microscope for whole-cell patch-clamp mea-
surements. APs were assessed in current-clamped my-
ocytes through an Axoclamp 900A amplifier (Molecular
Devices). Electrical signals were digitized using a 250 kHz
16-bit resolution A/D converter (Digidata 1550, Molecu-
lar Devices) and recorded through pCLAMP 9.0 10 soft-
ware (Molecular Devices) with low-pass filtering at 2 kHz.
Recording pipettes were fabricated using a horizontal (P-
1000, Sutter Instrument) glass microelectrode puller. Cur-
rent pulses 1.5 times threshold were applied for cell stim-
ulation. A sequence of 100 APs has been triggered by the
stimulation protocol at a 2 Hz pacing rate.

3. Method

The goal of the presented method is not to measure an
absolute trend in the observation, for each beat and for
each repolarization magnitude, but to determine how AP
profile dynamics is globally affected throughout the stim-
ulation sequence. Indeed, it can be seen as an extension of
the singulat value decomposition (SVD) approach where
an observation can be represented as the weighted sum of
vectors, and each of its weights is not a single scalar value,
but a function. For the SVD, the decomposition of each
AP observation vector xi (i = 1, . . . , I) is defined by:

xi = a1,iv1 + a2,iv2 + a1,iv3 + . . . (1)

where the vectors vj are constrained to be orthogonal and
normalized. This decomposition does not take into account
any temporal structures hidden in vectors xi, meaning that
if their components are shuffled the corresponding vj will
be shuffled accordingly and producing the same aj,i.

The new model we propose consists in decomposing the
observations such that :

xi = p1,i ◦ v1 + p2,i ◦ v2 + p3,i ◦ v3 + . . . (2)

The symbol ’◦’ stands for the Hadamard product corre-
sponding to the element-wise product. The application of
this decomposition to the AP matrix consists in consider-
ing a xi as the successive time values throughout the stimu-
lations, for a given amplitude level. In this case we assume
a temporal structure captured by both the pj,i and vj that

will allow a lower complexity of the decomposition com-
pared to (1). When using SVD, the variation information
is often shared by different components, thus making its
interpretation more difficult. In other words, it is expected
that the new modeling would facilitate this task because
of the lower number of summation terms. For our prac-
tical case, the model will be approximated by an order 1
decomposition:

xi = pi ◦ v + ei (3)

with ei the approximation error.
Assuming that the vector pi is fully parameterized by

using a linear combination of basis vectors, that is:

pi(n) =
K−1∑
k=0

bk(n)θi,k (4)

with bk(n) a polynomial basis for instance, the minimiza-
tion of

∑I
i=1 ‖ei‖22 provides an estimate of the parameters

of pi and v, with ‖v‖22 = 1. The latter constraint avoids in-
determinacies of the scaling and imposes the uniqueness of
the decomposition. This estimation is performed by using
an alternated least squares approach with the two following
solutions:

v̂ = (

I∑
i=1

diag(pi)
2)−1(

I∑
i=1

(xi ◦ pi)) (5)

and
pi = Mv̂θ̂i (6)

θ̂i = (MT
v̂ Mv̂)−1MT

v̂ xi (7)

with Mv̂ = B ◦ (v̂1IT ) and where the bk(n) are stored
column-wise in B and 1I stands for the unit vector.

Note that for the full extension in (2), by using similar
approach to the SVD computation, all the unknowns can
be estimated with the constraints that the summation terms
are orthogonal (but not the vj) and ‖vj‖22 = 1.

Once the pi are estimated the mean p is computed as
p̄ = 1

I

∑
i pi and ṽ = p̄ ◦ v such that 1

I

∑
i xi = ṽ, ne-

glecting the approximation error. This also allows to write
xi = p̃i ◦ ṽ with p̃i(n) = pi(n)/p̄i(n). This normalization
step is crucial because the algorithm could converge to-
ward −pi and −v̂ instead of pi and v̂ while the Hadamard
product of the two vectors produces the same result. This is
important in order to compare the derivatives of the p̃i(n)
for different observation sets regardless this indeterminacy.

In our application each pi is modeled as an order 3 poly-
nomial function with parameters to be estimated. The orig-
inality of the approach is to not assess the discriminative
power of the ṽ, however distinct for each cell, but to fo-
cus on the property of the transformed polynoms p̃i. If for
a given AP magnitude the polynom tends to decrease the
trend of the time values throughout the time, then it should

 

 

  



be observed through the mean of its derivative, regardless
the profile of the corresponding ṽ. The main property of
ṽ is to summarize all the common information shared by
all the xi in a different manner than with the SVD. For a
given cell and for each i value, according to each AP mag-
nitude, the mean of the derivative of p̃i is computed and
stored. The discrimination of the diabetic and the control
cells will be based on these last values.

It has been shown in [2] that, according to the mean AP
for the two groups, it is more relevant to normalize the
observations to avoid bias for the groups discrimination.
To achieve this task, the previously computed parameters
are normalized accordingly.

4. Results

The idea is to distinguish the control (41 records) from
the diabetic (76 records) myocells specifically on the re-
polarization phase. First, for each AP a transformation is
applied in order to get a strictly decreasing curve, which in
turn is also transformed by computing its inverse [3]. Then
for each stimulation sequence (the 30 first have been dis-
carded) we get a matrix of 70 inverse repolarizations (see
a sequence of stimulated control cell in Figure 1 and the
corresponding 3D visualization of the corresponding ma-
trix in Figure 2). Note that the horizontal axis stands for
the normalized amplitude and the vertical one for the time.
The application of the proposed decomposition to the APs
consists in considering a xi as a column of the matrix.

The derivatives, computed over the stimulation index,
of the corresponding p̃i, are given in Figure 3 and will
be used to characterize the trend as previously explained.
A ranksum test has been computed over the mean of the
derivatives in order to discriminate the two groups and is
given in Figure 4. In order to interpret the intervals of sig-
nificance of this test, the mean AP and its corresponding
derivative is plotted for the two groups in Figure 5. Fi-
nally, the median value of the discriminative parameter is
computed for the two groups in Figure 6.

5. Discussion and conclusion

In previous works [2],[3] applied to a subset of the
records it has been shown that automatic AP analysis can
be performed accurately. It has not been demonstrated that
the dynamics of the repolarization phase throughout the
stimulation allows to distinguish the two populations while
some specificity has been found. This could be due to the
inherent random variability of the repolarization regardless
the groups. While the classification of the two groups is
not really relevant in this context, the related tools could
reveal new insights of the diabetes effects over the repo-
larization. From the example given in Figure 3, it is clear
that the multiplicative polynoms pi convey complex infor-
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Figure 1. 70 superimposed repolarizations of a control
cell

Figure 2. 3D representation of the matrix where the 70
repolarizations have been stacked

mation. The computation of their derivatives succeeded in
classifying the two groups, as shown in Figure 4.

It is noticeable that the two groups are significantly dif-
ferent only around the shoulder of the mean AP (see Fig-
ure 5 for localization) and mostly in the late repolarization
phase. Referring to [4], this localization could be due to
changes of the Kv currents profile. In addition to the work
in [2], where it is shown that these changes are due to the
effect of diabetes, this new findings could help to iden-
tify which Kv currents are the most affected. Furthermore,
the median value shown in Figure 6, brings additional in-
formation on the dynamics. The diabetic group exhibits a
shortening trend (negative values) mostly for the late repo-
larization phase and conversely for the early phase. For the
control group a shortening is observed only in the interval
[80-65]% corresponding to the location of the mentioned
shoulder. This result extend the observations given in [5]
where similar behaviors are shown to be frequency depen-
dent.

In order to investigate the role of specific Kv currents in-
volved in the observed electrical alterations, new targeted
experiments are needed. Alternatively, in silico models

 

 

  



Figure 3. The derivative with respect to stimulation index
of the multiplicative estimated polynomials.
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Figure 4. Comparison of the two populations (Ranksum).
Significant when ≤0.05.
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Figure 5. Mean and derivative (magnified by 100) of the
control and diabetic populations. Note the shoulder shape
in the interval [80-70].
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Figure 6. Median value of the discriminant parameter for
the two populations

may be combined with our results to identify changes in
ionic conductances accounting for the remodeled repolar-
ization of the AP.
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