Heart Sound Classification Using Deep Structured Features

Michael Tschannen, Thomas Kramer, Gian Marti, Matthias Heinzmann, Thomas Wiatowski
Dept. IT & EE, ETH Zurich, Switzerland

Abstract

We present a novel machine learning-based method for heart sound classification which we submitted to the PhysioNet/CinC Challenge 2016. Our method relies on a robust feature representation—generated by a wavelet-based deep convolutional neural network (CNN)—of each cardiac cycle in the test recording, and support vector machine classification. In addition to the CNN-based features, our method incorporates physiological and spectral features to summarize the characteristics of the entire test recording. The proposed method obtained a score, sensitivity, and specificity of 0.812, 0.848, and 0.776, respectively, on the hidden challenge testing set.

1. Introduction

Current state-of-the-art methods for automated classification of pathology in heart sound recordings often suffer from poor generalization capabilities because they were trained and/or evaluated on small and/or carefully selected data sets. The aim of the PhysioNet/CinC Challenge 2016 is to encourage the development of robust heart sound classification algorithms delivering accurate predictions in both real-world clinical and non-clinical environments [1].

In recent years, deep convolutional neural networks (CNNs) [2, 3] have proven to be tremendously successful in many practical classification tasks. By feeding the input signal through a sequence of modules—each of which computes a convolutional transform, a non-linearity, and a pooling operation—these networks extract features that incorporate signal characteristics important for discrimination (e.g., higher order moments [4]) while suppressing irrelevant variations (such as the temporal locations of signal characteristics [5, 6]). Although deep CNNs are often used to perform classification directly [2, 3], usually based on the output of the last network layer, they can also act as stand-alone feature extractors [7] with the extracted features fed into a classifier such as, e.g., a support vector machine (SVM).

In this paper, we present a novel machine learning-based method for heart sound classification which we submitted to the PhysioNet/CinC Challenge 2016. The key ingredients of our method are a deep CNN-based feature extractor employing wavelet filters [8] and a SVM. By relying on pre-specified wavelet filters, instead of learning the filters from the data as in most standard deep CNN architectures, not only do we decrease the training time drastically, but also we reduce the risk of overfitting due to the small training set at hand. We note that wavelet-based features in combination with a SVM have been considered previously for heart sound classification, e.g., in [9–11]. However, these methods employ the wavelet transform only, i.e., they can be considered as single layer CNNs without non-linearity and are hence “shallow”, whereas our “deep” approach employs wavelets as filters in a CNN (i.e., we employ wavelets and, additionally, non-linearities and pooling operations at multiple layers) to compute a rich and robust feature representation.

For a more comprehensive review of prior work on heart sound classification we refer to [1, Sec. 3].

2. Methods

Our method (see the illustration in Figure 1) consists of a feature extraction stage and a classification stage. In the former stage, two types of features are extracted from the test heart sound recording, namely “deep features” that provide a robust characterization of the shape and morphology of each cardiac cycle in the recording, and “summary features” that describe the entire recording. The extraction of deep features hence requires segmentation of the test recording into cardiac cycles. Each cardiac cycle is associated with the feature vector obtained by concatenating the corresponding deep features and the summary features (i.e., the summary features are shared across all feature vectors extracted from the test recording). In the classification stage, each feature vector is classified into {“normal”, “abnormal”} (and possibly “unsure”, due to poor signal quality) using a L^2-SVM with radial basis function (RBF) kernel, noting that the prediction for the entire recording is obtained as the majority vote over all cardiac cycles.

The motivation for including summary features in ad-

1 The term “cardiac cycle” henceforth refers to the cardiac cycle itself or to the corresponding segment of the heart sound recording.
A tree-like network architecture is illustrated in Figure 2. The circular convolution operator denotes the underlying signal (here, a cardiac cycle) fed into the network, and where \(1 \leq j \leq J \) so-called feature maps \(\{ \psi_j \}_{j=1}^J \) are computed. Every layer of the network computes a set of the max-pooling operator (see, e.g., [8, Sec. 2.2, 2.3] for implementation using the pointwise Lipschitz-continuous non-linearity \(\rho \) [13], a pointwise Lipschitz-continuous pooling operator \(P_d \), and a Lipschitz-continuous pooling operator \(P_d \). Convolutions with wavelet filters, besides allowing for an efficient implementation using the algorithmic approach [13, Sec. 5.2.2], resolve characteristics of a signal at multiple scales \(1 \leq j \leq J \) (respectively, signal characteristics that correspond to dyadic frequency bands \([2^{-j} \cdot (j-1), 2^{-j} \cdot (j+1)] \cup [2^{-j-1} \cdot (j+1), 2^{-j} \cdot (j-1)]\)), the application of a pointwise non-linearity \(\rho_d \) activates or de-activates features, and the application of a pooling operator \(P_d \) reduces the signal dimension and renders the features robust w.r.t. non-linear deformations and translations. Here, for all layers \(1 \leq d \leq D \), we use the rectified linear unit (ReLU) non-linearity and the max-pooling operator (see, e.g., [8, Sec. 2.2, 2.3] for definitions). Every layer of the network computes a set of so-called feature maps \(\{ f_n^d \}_{n=1}^{J^d} \) according to
\[
f_n^d := f_{(k,j)}^d := P_d \left(\rho_d \left(f_{k-1}^{d-1} \ast \psi_j \right) \right),
\]
where \(1 \leq k \leq J^{d-1}, 1 \leq j \leq J, f_0 := f \) is the input signal (here, a cardiac cycle) fed into the network, and \(\ast \) denotes the circular convolution operator. The underlying tree-like network architecture is illustrated in Figure 2.

The final feature vector describing \(f \) is obtained by collecting (in a single feature vector) (i) every feature map \(f_n^d, 1 \leq d \leq D, 1 \leq n \leq J^d \), generated in the network, (ii) low-pass filtered versions of the feature maps \(f_n^d \), and (iii) a low-pass filtered version of the signal \(f \) itself. Figure 3 shows an example feature vector of a cardiac cycle for a network of depth \(D = 3 \) employing \(J = 3 \) wavelet scales, the network parameters used for the experiments in Section 3.

Before the cardiac cycles are fed into the feature extraction network, they are re-sampled to a length of 1024 to ensure that they are all mapped to feature vectors of equal dimension. Furthermore, each cardiac cycle is normalized by mean subtraction and division by its standard deviation. For the described network parameters the dimension of the feature vectors is 12,160. To reduce computational complexity (in particular during training) the dimension of the feature vectors is reduced to 400 by principal component analysis. Furthermore, the durations of the four heart sound states are appended to the (dimensionality-reduced) feature vectors as additional features.

Preliminary experiments showed that the modulus non-linearity and pooling by sub-sampling leads to marginally worse classification performance than the ReLU non-linearity combined with max-pooling. These experiments also revealed that increasing the number of principal com-
ponents or the depth D of the feature extraction network does not significantly improve classification performance.

Finally, an alternative to extract deep features from the 1-D cardiac cycles is to compute a 2-D time-frequency representation (e.g., a spectrogram) of the cardiac cycles and feeding them into our feature extraction network equipped with 2-D Haar wavelet filters (and, of course, 2-D pooling operators). Intuitively, such an approach might lead to a richer feature representation allowing for better discrimination between normal and abnormal heart sounds. However, preliminary experiments showed that this approach does not improve classification performance.

Summary features (state statistics and PSD): We rely on the 20 features described in [1, Sec. 6.2] consisting of first and second order statistics of amplitudes and durations associated with the four heart sound states obtained through segmentation. We refer to this set of features as state statistics, see also Figure 1. In addition, we use a power spectral density (PSD) estimate of length 128 (covering the spectral band 0-500Hz) computed from the raw (unsegmented) heart sound recording using the Welch method [14, Sec. 2.7.2] with half-overlapping Hamming windows. The PSD estimate provides a compact description of the second order statistics of the heart sound recording and may improve the robustness of the classification when the segmentation is inaccurate.

Evaluation and parameter selection: We evaluated the proposed method on the publicly available PhysioNet/CinC Challenge 2016 data set containing 3,153 heart sound recordings of 764 subjects, including both healthy individuals and patients with different heart diseases. Each recording has two labels, the first of which indicates whether the subject is healthy (“normal”) or was diagnosed with a cardiac disease (“abnormal”), and the second indicating the signal quality (“good”/“poor”). We refer the reader to [1] for a detailed description of the data set. The classification performance was assessed using the challenge score (MAcc) defined as the arithmetic mean of sensitivity and specificity, both modified to account for predictions of the label “unsure”, see [1, Eq. (1) and (2)] for details. We consider both binary classification into {“normal”, “abnormal”}, ignoring the quality labels, and ternary classification into {“normal”, “abnormal”, “unsure”}, for which all the recordings with “poor” signal quality were labeled “unsure”. The parameter of the RBF kernel and the regularization parameter of the L^2-SVM were selected using 5-fold stratified (by patient) cross-validation. Class-adaptive sample weights were used to compensate for the class imbalance in the data set. Note that for ternary classification the sample weights were computed based on the labels “normal”/“abnormal” only as inclusion of the label “unsure” in the weight computation reduced the MAcc.

Modification for unsupervised ternary classification: We briefly outline a simple modification (not used to obtain the results in Section 3) of our method to learn a ternary classifier based on the labels {“normal”, “abnormal”} only. Specifically, this extension implements a so-called reject option [15]. Assuming an estimate $\hat{P}(Y|r)$ of the posterior probability $P(Y|r)$ of the label $Y \in \{\text{“normal”}, \text{“abnormal”}\}$ given the test recording r to be available, a ternary prediction \hat{Y}_{tar} is obtained as

$$\hat{Y}_{\text{tar}} = \begin{cases} \text{“normal”}, & \text{if } \hat{P}(Y = \text{“abnormal”}|r) < \tau \\ \text{“abnormal”}, & \text{if } \hat{P}(Y = \text{“abnormal”}|r) > 1 - \tau \\ \text{“unsure”}, & \text{otherwise} \end{cases}$$

where $\tau \in (0, 1/2]$ is a threshold parameter. Under certain (not necessarily realistic) model assumptions one can motivate the estimation of $\hat{P}(Y|r)$ according to $\hat{P}(Y|r) := (1/L) \sum_{l=1}^{L} \hat{P}(Y|b_l)$, where $\{b_l\}_{l=1}^{L}$ are the cardiac cycles in the test recording r. With the heart sound classification method described above, the posterior probability estimates $\hat{P}(Y|b_l)$ can be obtained either from the SVM model using Platt scaling [16], or by replacing the SVM model with a logistic regression model. The threshold parameter τ can be optimized using cross-validation. If the score used to assess the performance of the classifier does not sufficiently reward the label “unsure”, $\tau = 0.5$ will be selected, which amounts to binary classification.

3. Results

Table 1 shows the 5-fold cross validation MAcc for binary and ternary classification. To study the effect of different features we report the performance for classification based on deep features only (DF), deep features and state statistics (DF + SS), as well as deep features and all summary features (DF + SS + PSD).

The highest MAcc we obtained during the official phase of the PhysioNet/CinC Challenge 2016 on the hidden challenge testing set containing 1,277 recordings was 0.812 (sensitivity: 0.848, specificity: 0.776), for binary classification based on DF + SS + PSD. With this MAcc our algorithm is within 5.6% of the winning team’s MAcc, ranked 14th out of 48 competitors. In terms of running time, all
our entries to the challenge during the official phase used less than 21% of the computation quota available.

<table>
<thead>
<tr>
<th>features</th>
<th>binary classification</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAcc</td>
<td>Se</td>
<td>Sp</td>
</tr>
<tr>
<td>DF</td>
<td>0.854</td>
<td>0.869</td>
<td>0.838</td>
</tr>
<tr>
<td>DF + SS</td>
<td>0.860</td>
<td>0.910</td>
<td>0.811</td>
</tr>
<tr>
<td>DF + SS + PSD</td>
<td>0.870</td>
<td>0.908</td>
<td>0.832</td>
</tr>
</tbody>
</table>

Table 1. Results (MAcc: challenge score, Se: sensitivity, Sp: specificity) for different configurations of our method (5-fold cross validation).

4. Discussion

For binary classification, the results in Table 1 show that a combination of deep features and summary features leads to a higher MAcc than purely deep feature-based classification. In more detail, the configurations involving summary features have a slightly lower specificity and a significantly higher sensitivity than the configuration based on deep features only, hence leading to less balance between sensitivity and specificity. For ternary classification, the improvement through summary features is less pronounced than for binary classification.

Perhaps surprisingly, ternary classification consistently leads to a lower MAcc than binary classification. Possible reasons for this phenomenon could be that the subset of recordings with “poor” signal quality is too heterogeneous to be reliably discriminated from “normal” and “abnormal” recordings using our method, or that reliable classification into {“normal”, “abnormal”} is sometimes possible even when a recording has “poor” signal quality.

5. Conclusion

We presented and evaluated a robust method for heart sound classification that combines a deep CNN-based feature extractor and a SVM. Improving the identification of recordings with poor signal quality and a more elaborate way to incorporate summary features into the proposed method are interesting directions to be explored in the future.

References

Address for correspondence:
Michael Tschannen, Thomas Wiatowski
ETH Zürich, Communication Technology Laboratory
Sternwartstrasse 7
CH-8092 Zürich
Switzerland
{michaelt, withomas}@nari.ee.ethz.ch