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Abstract 

A number of relevant clinical measurements are de-
rived from QRS detection. As a consequence, the fast and 
accurate calculation becomes a key factor to meet this 
target, which is especially relevant for the huge amount 
of beats recorded in the increasingly used long term mon-
itoring. In this paper, we propose several algorithms that 
present high efficiency and accuracy for the QRS detec-
tion in long term, and we benchmark them with some of 
the most relevant published QRS detection algorithms. All 
the implemented algorithms were applied to a specifically 
created gold-standard database. This gold-standard was 
labelled by expert clinicians, who evaluated manually 
every beat within 120 records of 48h multilead Holter 
from Hospital Virgen de la Arrixaca of Murcia (Spain). 
One of our new methods outperformed the others in terms 
of accuracy and computational efficiency, by using a 
multilead processing combining OR-function with a new 
Pan-Tompkins detector. It presented 99.2% sensitivity, 
95.6% specificity, 97.1% accuracy, and 77-s processing 
time for our database. The QRS detection methods used 
in short term ECG records or traditional 24h Holter can 
be limited in long term, whereas the proposed multilead 
processing can provide with better performance in these 
monitoring scenarios. 

1. Introduction

The main purpose of cardiac monitoring is the detec-
tion of cardiac pathologies with transient manifestations 
or symptoms. The 24h holter is the device more frequent-
ly used for ECG monitoring in clinical environments. To 
carry out this test, the patient is subjected to monitoring 

for twenty-four consecutive hours, while performing their 
daily activities normally carrying the said device. Re-
search in recent years has proven the long term monitor-
ing (LTM) to be an important prognostic tool. It has been 
shown that diagnostic indicators are seen more clearly in 
longer periods. For this reason, recent works are focusing 
in incremental LTM protocols and systems: 7 days, 15 
days, or 21 days. Inside this new scenario, one of the 
most important challenges is the extraction of different 
parameters that can be used to improve the accuracy of 
the diagnosis. The main challenges are in the massive 
amount of data that the clinician must analyse and vali-
date for each patient, if the traditional protocols and sig-
nal processing techniques were to be applied. New proto-
cols and new and more advanced signal processing tech-
niques are required to serve this new framework, and that 
is where relevant literature is currently focused [1-6]. 

One of the key parameters to examine the heart behav-
iour is the heart rate (HR) variation observation, whose 
analysis supports much heart disease analysis, namely, 
arrhythmias, transient ischemic episodes, silent myocar-
dial ischemia, and arrhythmic risk assessment of patients, 
among others [7]. In all cases, and in order to create the 
heart rate variability signal, the detection of the QRS 
complex, the R-peak and the time intervals among two 
consecutive beats, are required.  

The objective of this paper is to develop a QRS 
detection algorithm capable of running with the highest 
possible computational efficiency and accuracy over 
LTM records. This goal has been accomplished by using 
an algorithm that takes into account both the inter-lead 
and the intra-lead information by adjusting the threshold 
level and optimizing the computational requirements. 
Accuracy and computational efficiency of algorithms 
were tested over, a trusted and solid set of 48h holter 
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records, previously and carefully labelled by the clinical 
team from Hospital Universitario Virgen de la Arrixaca 
(Murcia, Spain). Conventional statistics and ratios were 
used for comparison: sensitivity, specificity, positive 
predictive value, and negative predictive value. 

The present paper is structured as follows. In Section 
2, we first describe the appliances and tools used for sig-
nal registering and processing. Second, we elaborate on 
all algorithms applied for signal processing. In Section 3, 
we include the different experiments and results of select-
ed methods applied over our database. Finally, Section 4 
contains the discussion and conclusions. 

2. Methods

2.1.  Equipment and algorithm overview 

Existing public and well referenced databases such as 
MIT-BIH arrhythmia database or QT databases do not 
contain LTM registers with over 24h signals, so a tailored 
database was developed for the purpose of this project. 
We will refer this database as the Long Term Database or 
LTDB in this paper, which incorporates 48 hours record-
ings of 17 patients from 5 different hospitals. Two pa-
tients exhibited a normal heart function, five had an im-
planted defibrillator, five presented atrial fibrillation, and 
the last five suffered from frequent premature ventricular 
contractions.  

Two different Holter recorders were used for the ECG 
signal registering, namely, the SpiderView, from ELA 
medical, and SpiderView Plus, from Sorin Group. Sam-
pling frequency was 200 Hz. The number of sensors used 
for the acquisition were 3 and 12. (i.e., with monitoring 
periods longer than 24 hours). 

The signal processing was structured in four phases: 
segmentation, for increasing computational efficiency, 
pre-processing for denoising purposes and initial adjust-
ments, feature extraction for highlighting QRS complex-
es, and R-peaks detection by thresholding for final detec-
tion and HR analysis. 

Segmentation. Special remark is required at this point 
with regard to the large size of the signals. A 3-leads 
signal, sampled at 200 Hz with 15 bits resolution during 
48 consecutive hours creates a single file of 100 MB, so, 
to process it in a standard computer, adequate segmenta-
tion for efficient computation is required. 

Pre-Procesing incorporated baseline wander, band-
pass filtering and detection of signal presence. The band-
pass filter was defined with low-high cut-off frequencies 
of 1Hz-50Hz. The baseline wander implementation in-
corporated a polynomial interpolation algorithm.  

The presence or absence of the signal was evaluated 
based on empirical thresholding of classical statistical 
parameters, such as the standard deviation. 

2.2. Feature signal computation 

Several algorithms were compared while extracting a 
feature signal for thresholding using Independent Com-
ponent Analysis (ICA), Principal Component Analysis 
(PCA), Pan Tompkins (PT), Root Mean Square (RMS), 
And, Or, Simple Coupling (SC) and Polling (Poll). 

ICA decomposition. The ICA method provides the 
decomposition of the signals in a new set of statistical 
independent signals. In this technique, it is intended to 
separate originally related elements, from none related 
noisy components.  

Mathematically, let X be the matrix with recorded mul-
tilead signals and let S be the unmixed set of source sig-
nals, matrix A represents a linear mixing condition which 
transforms the original signal set into the recorded one. In 
matrix form, the mixture and unmixture equations can be 
denoted as follows, 

𝑿𝑿 = 𝑨𝑨𝑨𝑨 → 𝑺𝑺 = 𝑨𝑨−1𝑿𝑿 = 𝑾𝑾𝑾𝑾   (1) 

Therefore, the ICA problem focusses on estimating A 
and S matrices from the X matrix, by applying the condi-
tion that the S matrix components must be statistically 
independent, and the problem can be reformulated to find 
the W matrix minimizing the S components Gaussianity. 
For that purpose a FastICA algorithm was applied. The 
FastICA outputs are disordered and thus the cleaned ECG 
signal is chosen by measuring the kurtosis [8]. 

PCA decomposition. The PCA model aims to find a 
source signal as well, but does not assume the independ-
ence in resulting sets, but rather orthogonally. It is assume 
that one or more final components will be free from all 
type of noise. To perform this goal, it is necessary to 
transform a coordinate system of a given dataset in order 
to increase its variation. Then, the covariance matrix of 
all leads is calculated and the eigenvectors magnitudes are 
measured. A final transformation is done according to the 
highest eigenvector. The PCA output is a dataset where 
the wanted characteristic ECG is often the first compo-
nent  [9]. 

PT algorithm. The PT algorithm obtains the charac-
teristic signal by peaking only one lead from the dataset 
(one with the lowest noise content), filtering with a band-
pass filter and applying the following derivative filter: 

𝐻𝐻(𝑧𝑧) = 0.1(−2𝑧𝑧−2−𝑧𝑧−1 + 𝑧𝑧+2𝑧𝑧2) (2) 

Then, the signal is squared to boost the R-peaks ampli-
tude and median/integration filter is applied with a sliding 
window. This method uses one single lead,  hence, any 
relevant information from other leads might not be used 
and therefore limiting the total eventual power of the 
usage of all existing information [10]. 

 

 

  



RMS algorithm. To improve the PT mentioned disad-
vantage, we developed the RMS algorithm, which creates 
a characteristic signal by combining all the leads as 

𝑦𝑦𝑐𝑐(𝑛𝑛) = �∑ 𝑥𝑥2(𝑛𝑛, 𝑙𝑙)𝐿𝐿
𝑙𝑙=1  (3) 

where 𝑦𝑦𝑐𝑐 stands for the characteristic signal, 𝑥𝑥(𝑛𝑛, 𝑙𝑙) de-
notes l-th lead of the input signal after pre-processing 
stage, and L is the number of leads. 

2.3. Combinational methods 

In order to enhance noise protection and to take benefit 
from multiple lead, we developed several combinational 
methods for obtaining a characteristic signal. The pro-
posed methods are based on a tailored PT algorithm, 
taking into account the intra-lead information as well as 
the inter-lead one. The set of characteristic signals is 
created according to the following equation, 

𝑦𝑦𝑐𝑐(𝑛𝑛, 𝑙𝑙𝑖𝑖) = 𝑥𝑥𝑓𝑓(𝑛𝑛, 𝑙𝑙𝑖𝑖)�∏ 𝑥𝑥𝑓𝑓(𝑛𝑛, 𝑙𝑙)𝐿𝐿
𝑙𝑙=1 𝑙𝑙≠𝑙𝑙𝑖𝑖  (4) 

where the 𝑦𝑦𝑐𝑐(𝑛𝑛, 𝑙𝑙𝑖𝑖) is the characteristic signal of i-th 
lead  and 𝑥𝑥𝑓𝑓(𝑛𝑛, 𝑙𝑙𝑖𝑖) is the preprocessed signal filtered with 
the PT filter (2). R-peaks are detected in every character-
istic signal and subsequently, the detection results are 
combined. We have designed four different possibilities, 
as follows: 

1. And. Logic function AND, which reports an R-
peak only when it is detected in all leads in the same time. 

2. Poll. If a peak is detected in the majority of
leads, it is reported as a good detection. 

3. SC. To report an R-peak detection, it must be
found in at least two leads. 

4. Or. Logical function OR, which reports an R-
peak if it is detected in at least one lead. 

While comparing detections in different leads, we im-
plement a tolerance window to take into account the delay 
between leads. The value of this window was chosen to 
be 10ms, a time delay which stands for less than 10% of 
the whole R-peak duration. 

2.4.  R-peak detection 

Once the feature signal is in place, the R-peak thresh-
old detection can be applied. We neglect the T peaks by 
using a double threshold technique. The first threshold 
acts over the amplitude to detect the peaks and the second 
one is applied over the time to check the condition im-
posed by the cardiac refractory period. 

3. Experiments and results

In order to analyse the behaviour of our algorithm over 
the most commons configurations of Holters (i.e., two 
lead, and three leads), we created two subsets using our 
database: the first one containing recordings with two 
leads and the second one containing recordings with three 
leads. We made these subsets using a selection of the 
leads for every the register of our database. In every ex-
periment described from now on, we specify the subset 
used. 

The figures of merit used were: Sensibility (S), Posi-
tive Predictive Value (P), and Accuracy (A).     

3.1. Efficiency improvement 

To optimize the computational efficiency, different 
signal segmentation strategies were examined. In terms of 
computational efficiency, the worst case scenario will be 
the one containing the highest number of leads, and for 
that reason the 3 leads Holter database was selected to 
perform this experiment.  S, P and A were selected as 
merit figures. Table 1 shows the optimal segment length 
for every algorithm. It can be seen that 5 min was the best 
trade-off for computing time and good performance for 
several methods. 

3.2. Threshold optimization 

In this experiment we used both data subsets to reach 
the highest accuracy and independency on parameters of a 
given signal, and several threshold level calculations were 
tested. These thresholds were calculated by adding the x-
th multiple of signal average value with the y-th multiple 
of characteristic signal standard deviation. As figure of 
merit, we used S, P and A. Table 2 shows the mean of the 
figures of merit for every algorithm using its optimal 
amplitude threshold. 

Method Segment
length 

Computing 
time [s] 

Statistical measures 
[%] 

S P A 
ICA 6 h 99,44 90,48 84,80 78,99 
PCA 30 min 83,71 96,79 95,89 93,00 
RMS 30 min 79,18 99,07 94,21 93,48 
PT 2 h 76,24 99,46 95,96 95,48 

And 5 min 99,08 96,42 95,59 99,08 
Or 5 min 77,33 99,61 95,78 95,44 
SC 5 min 77,33 99,28 96,09 95,45 
Poll 5 min 77,33 99,28 96,09 95,45 

Table 1 Computational efficiency optimization 

 

 

  



Method 

Statistical measures [%] 

2-leads database 3 -leads  database 

S P A S P A 

Poll 97,81 93,53 93,53 98,98 95,29 95,29 

Or 99,84 92,63 92,63 99,78 93,22 93,22 

And 97,81 93,53 93,53 98,50 95,49 95,49 

SC 97,81 93,53 93,53 98,39 92,94 92,94 

ICA 84,23 70,53 70,53 88,56 70,53 70,53 

PT 98,21 88,26 88,26 98,21 88,26 88,26 

RMS 98,04 89,05 89,05 98,07 89,16 89,16 

PCA 95,63 84,12 84,12 95,73 85,93 85,93 

Table 2 Statistical measures for 2 and 3 leads database. 

3.3. Optimal R-peak Detection Method 

According to previous experiments, the OR combina-
tional method outperformed the rest of the developed 
techniques (see Table 2). It standouts in terms of compu-
tational time, as well as in detection success.  

During this experiment, free parameters tuning pro-
cesses were performed with different strategies to im-
prove accuracy, with the following results. Low pass-
filter cut-off frequency of 25Hz showed better results than 
the original 50Hz. Refractory period of the algorithm was 
adjusted, as well as key parameters for denoising mecha-
nisms. The optimized algorithm results showed 99,23% 
S, 95,63%  specificity, 95,71%  P, 99,23% negative pre-
dictive value, and 97,06% A. 

4. Conclusion
The method defined in this paper, with a suitable seg-

mentation, using the modified QRS detection algorithm 
defined by PT, and using the complete information pre-
sent in all available leads combined with an OR function, 
outperformed all the previously described algorithms over 
a 48h holter signals. Mentioned improvements are two 
fold, in terms of accuracy and computational efficiency. 
Further analysis and comparisons over public databases 
are required for the validations of presented findings. 
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