
GPU Implementation of Levenberg-Marquardt Optimization for T1 Mapping

Shufang Liu1,2,3, Aurélien Bustin1,2,3, Darius Burshka1, Anne Menini2, Freddy Odille3,4

1 Technische Universität München, München, Germany
2 GE Global Research Center, München, Germany

3IADI, INSERM U947 and Université de Lorraine, Nancy, France
4CIC-IT 1433, INSERM, CHRU Nancy and Université de Lorraine, Nancy, France

Abstract

T1 mapping is an emerging MRI research tool to
characterize diseased myocardial tissue. The T1 map is
generated by fitting an exponential relaxation curve to the
acquired image data. Levenberg-Marquardt algorithm is a
standard way to solve this nonlinear curve fitting problem.
However, the execution on the standard CPU can be time-
consuming and incompatible with clinical routine. In this
paper, a GPU implementation is performed to reduce the
computation time of the standard T1 mapping. In addition,
a new vectorized approach is proposed to include spatial
regularization in the curve fitting process to improve the
robustness. The GPU implementation is validated on
NVIDIA K42000 GPU using cardiac T1 data from 16
volunteers. The computation time shows significant
decrease in both pixel-wise and vectorized curve fitting.
The pixel-wise curve fitting is accelerated by a factor of 30+
compared to the standard sequential C code and the
vectorized curve fitting is improved by a factor of 47 and 38
for 3-parameter and 2-parameter curve fitting compared to
the Matlab code.

1. Introduction

T1 mapping is an emerging MRI technique to distinguish
the diseased myocardial tissue from the normal tissue.
Compared to conventional protocols such as late-
enhancement imaging, T1 mapping is a quantitative
measurement that does not depend on the MR system. This
tool has gained more and more attention in recent years[1–
3].

A typical T1 map is generated by fitting an exponential
model to a sequence of images for each pixel. The image
signal is first flipped by an external radio frequency pulse,
and then recovered to its equilibrium state. The relaxation
process can be modeled by an exponential curve and T1 is
the relaxation constant of this exponential curve. There are
different MR sequences to generate the images, named as
inversion recovery (IR)[4] and saturation recovery (SR)[5].
The difference between these two sequences is that the
signal is flipped by 180 degree for IR and 90 degree for SR.

Usually 8 images are acquired for SR and 11 images are
acquired for IR. IR techniques such as MOLLI are more
widely used due to their larger dynamic range and better
precision (i.e. reproducibility), whereas SR techniques such
as SASHA or SMART1Map provide more accurate T1
values [6]. Different models have been proposed, a 2-
parameter model showing more stable curve fitting but
lower accuracy, whereas a 3-parameter model is used to
correct for the inhomogeneity of the initial flip angle [7].

Due to the different imaging protocols, different
formulas have been used to describe the relaxation curve.
Table 1 gives a summary of the models. More detailed
descriptions can be found in [7].

Table 1. Summary of T1 relaxation model

 𝑁𝑁𝑝𝑝 Model

Saturation-recovery
3 𝑦𝑦𝑡𝑡 = 𝐴𝐴 ∗ �1 − 𝑒𝑒−

𝑡𝑡
𝑇𝑇� + 𝐶𝐶

2 𝑦𝑦𝑡𝑡 = 𝐴𝐴 ∗ �1 − 𝑒𝑒−
𝑡𝑡
𝑇𝑇�

Inversion-recovery
3 𝑦𝑦𝑡𝑡 = �𝐴𝐴 ∗ �1 − 𝑒𝑒−

𝑡𝑡
𝑇𝑇� + 𝐶𝐶�

2 𝑦𝑦𝑡𝑡 = �𝐴𝐴 ∗ �0.5 − 𝑒𝑒−
𝑡𝑡
𝑇𝑇��

The current implementation of the curve fitting can take

a long time. For a typical T1 series of 8 images, the pixel-
wise curve fitting algorithm implemented on Matlab usually
take several minutes. A notable delay is observed. Thus
either a mask or a ROI is used to select the pixels that are
clinically relevant, which results in a reduction of the
computation time. A vectorized version of the algorithm is
also proposed, which is aimed to include a spatial
regularization term in the Levenberg-Marquardt
optimization to improve the quality of resulting T1 maps.

The GPU architecture is characterized by the single
instruction multiple data (SIMD) feature, which allows
operations on multiple data simultaneously. Nowadays,
more and more applications achieve better performance by
taking the advantage of the GPU architecture. In the pixel-
wise curve fitting, each pixel can be fitted individually,
which is ideal for GPU. For the vectorized curve fitting with
spatial regularization, the fitting of each pixel is no longer
independent so the algorithm needs to be adapted. The
essential part is to solve a large matrix inversion problem,
which involves matrix multiplications and vector

Computing in Cardiology 2017; VOL 44 Page 1 ISSN: 2325-887X DOI:10.22489/CinC.2017.003-070

operations, which can also fit GPU.
In this paper, we present the GPU implementation of the

pixel-wise and vectorized Levenberg-Marquardt algorithms
using the NVIDIA CUDA framework. Section 2 introduces
the mathematical background of the optimizer. Section 3
describes the detail of the GPU implementation. Section 4
shows the performance of the GPU implementation.

2. Mathematical Background

2.1. Levenberg-Marquardt Algorithm

LM Algorithm [8–10] is a popular choice to solve non-
linear curve fitting problems. In our case, we consider 𝑁𝑁𝑚𝑚
measurements for each pixel, 𝑁𝑁𝑚𝑚 = 8 for SR and 𝑁𝑁𝑚𝑚 = 11
for IR. The unknown model can be denoted as 𝑓𝑓(𝑡𝑡;𝑝𝑝),
where 𝑝𝑝 is the parameter set with 𝑁𝑁𝑝𝑝 unknowns and t is the
inversion time. In our case 𝑁𝑁𝑝𝑝= 2 or 3. Then the problem
can be formulated as
𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝‖𝑓𝑓(∙;𝑝𝑝) − 𝑦𝑦‖2 (1)

To solve this problem, an iterative method is employed.
Starting from an initial guess of the parameters 𝑝𝑝𝑜𝑜, the
method consists of searching for an optimal refinement of
the parameters δp, by linearizing the cost function around
the current estimate:
 min
𝛿𝛿𝛿𝛿

‖𝑓𝑓(∙;𝑝𝑝 + 𝛿𝛿𝛿𝛿) − 𝑦𝑦‖2 = min
𝛿𝛿𝛿𝛿

�𝐽𝐽(𝑝𝑝)𝛿𝛿𝛿𝛿 − �𝑦𝑦 − 𝑓𝑓(∙; 𝑝𝑝)��2 (2)

where 𝐽𝐽(𝑝𝑝) is the Jacobian matrix of 𝑓𝑓 with respect to the
parameters, evaluated at the current guess p. 𝐽𝐽(𝑝𝑝) is a 𝑁𝑁𝑚𝑚 ×
𝑁𝑁𝑝𝑝 matrix. Therefore LM involves solving a sequence of
linear least squares problems using a regularized inversion
of the Jacobian matrix in order to calculate the following
update of the solution at a given iteration k:
𝛿𝛿𝛿𝛿 = 𝑝𝑝𝑘𝑘+1 − 𝑝𝑝𝑘𝑘 = (𝐽𝐽(𝑝𝑝𝑘𝑘)𝑇𝑇𝐽𝐽(𝑝𝑝𝑘𝑘) + 𝜆𝜆𝑘𝑘𝐼𝐼𝑑𝑑)−1𝐽𝐽(𝑝𝑝𝑘𝑘)𝑇𝑇�𝑦𝑦 − 𝑓𝑓(𝑝𝑝𝑘𝑘)� (3)

Where 𝐼𝐼𝐼𝐼 is the identity matrix and 𝜆𝜆𝑘𝑘 is the LM
regularization coefficient. This regularization coefficient is
adapted throughout iterations. The rationale of LM is to start
with a large value of 𝜆𝜆𝑘𝑘, so the method behaves like a
steepest gradient descent in the first iterations, then to
decrease 𝜆𝜆𝑘𝑘as p approaches the solution, so the method
behaves like a quasi-Newton method in the last iterations.
Such schemes are thought to yield optimal convergence
speed in the nonlinear optimization literature. Several
variations of the LM technique have been proposed
depending on the choice of 𝜆𝜆0, update rule for 𝜆𝜆𝑘𝑘 and
stopping condition. Here we choose the following update
rule [10]:
�
𝑖𝑖𝑖𝑖 𝜌𝜌(𝑝𝑝) > 𝜀𝜀, 𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑘𝑘+1 = 𝑝𝑝𝑘𝑘 + 𝛿𝛿𝛿𝛿, 𝜆𝜆𝑘𝑘+1 = min(𝜆𝜆𝑘𝑘 × 2, 107)
 𝑖𝑖𝑖𝑖 𝜌𝜌(𝑝𝑝) ≤ 𝜀𝜀,𝑑𝑑𝑑𝑑 𝑛𝑛𝑛𝑛𝑛𝑛 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑝𝑝𝑘𝑘 , 𝜆𝜆𝑘𝑘+1 = max(𝜆𝜆𝑘𝑘 2⁄ , 10−7)

𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝜌𝜌(𝑝𝑝) = ‖𝑓𝑓(𝑝𝑝)‖2−‖𝑓𝑓(𝑝𝑝+𝛿𝛿𝛿𝛿)‖2

‖𝑓𝑓(𝑝𝑝)‖2−‖𝑓𝑓(𝑝𝑝)+𝐽𝐽(𝑝𝑝)𝛿𝛿𝛿𝛿‖2
 and iterations are stopped when

‖𝑝𝑝𝑘𝑘+1 − 𝑝𝑝𝑘𝑘‖ ‖𝑝𝑝𝑘𝑘+1‖⁄ < 𝜏𝜏, with τ a given tolerance, or when a
maximal number of iterations was reached.

2.2. Vectorized Levenberg-Marquardt
Algorithm

In this section, we vectorize the LM algorithm by
grouping the same operations that are performed multiple
times on different data into a single operation performed
once on a large array of data. It is therefore possible to
incorporate constraints such as spatial smoothness to
improve the processing itself.

In order to formulate the vectorized version of LM for an
image of Npix pixels, we use the same algorithm framework
as described in the previous section. However we redefine
y to be the whole acquired T1-weighted dataset, a vector of
𝑁𝑁𝑝𝑝𝑝𝑝𝑥𝑥𝑁𝑁𝑚𝑚 elements, 𝑦𝑦 = {𝑦𝑦1,1,𝑦𝑦1,2, … ,𝑦𝑦𝑖𝑖,𝑘𝑘}, in which 𝑦𝑦𝑖𝑖,𝑘𝑘 is
the 𝑘𝑘-th acquisition of pixel 𝑖𝑖. 𝑝𝑝 the concatenated parameter
maps, a vector of 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁𝑝𝑝 elements, 𝑝𝑝 = {𝑝𝑝1,1,𝑝𝑝2,1,⋯ ,𝑝𝑝𝑖𝑖,𝑚𝑚}
where 𝑝𝑝𝑖𝑖,𝑚𝑚 is the 𝑚𝑚-th parameter of pixel 𝑖𝑖 and 𝑓𝑓 is the
fitting model function operating on images. Adding a spatial
smoothness constraint leads to a vectorized version of Eq.
(1):

min
𝑝𝑝
‖𝑓𝑓(𝑝𝑝) − 𝑦𝑦‖2 + 𝜇𝜇‖𝐺𝐺𝐺𝐺‖2 (4)

where μ is a scalar controlling the spatial regularization
weight and 𝐺𝐺 is an operator returning a concatenation of the
spatial gradients of each parameter map, computed by
forward differences. 𝐺𝐺 is a sparse matrix of
size 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁𝑝𝑝 × 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁𝑝𝑝, with 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑 the number of
dimensions in the image (here 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑=2). This penalization
term can reduce the local variations, thus making the
method more robust to noise. The vectorized LM update
formula becomes:
𝛿𝛿𝛿𝛿 = (𝐽𝐽(𝑝𝑝𝑘𝑘)𝑇𝑇𝐽𝐽(𝑝𝑝𝑘𝑘) + Λ𝑘𝑘 + 𝜇𝜇𝐺𝐺𝑇𝑇𝐺𝐺)−1𝐽𝐽(𝑝𝑝𝑘𝑘)𝑇𝑇(𝑦𝑦 − 𝑓𝑓(𝑝𝑝𝑘𝑘)

− 𝜇𝜇𝐺𝐺𝑇𝑇𝐺𝐺𝑝𝑝𝑘𝑘)
 (5)

Note that the term 𝜆𝜆 𝑘𝑘𝐼𝐼𝐼𝐼 in Eq. (3) has been substituted
by a diagonal matrix 𝛬𝛬𝑘𝑘, the diagonal elements of which
contain the map of LM regularization coefficients at
iteration k. 𝐽𝐽(𝑝𝑝𝑘𝑘) is now a large sparse matrix of size
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁𝑚𝑚 × 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁𝑝𝑝. The element in row (𝑖𝑖 + 𝑘𝑘 ∗ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝)
corresponds to 𝑦𝑦𝑖𝑖,𝑘𝑘, the intensity of pixel 𝑖𝑖 at inversion time
k. Since 𝑦𝑦𝑖𝑖,𝑘𝑘 depends only on its own parameter 𝑝𝑝𝑖𝑖,𝑚𝑚(𝑚𝑚 ∈
[1,𝑁𝑁𝑚𝑚]), the 𝐽𝐽(𝑝𝑝𝑘𝑘) is a large sparse matrix, concatenated of
several diagonal matrices. 𝐽𝐽(𝑝𝑝𝑘𝑘)𝑇𝑇𝐽𝐽(𝑝𝑝𝑘𝑘) is then a 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁𝑝𝑝 ×
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁𝑝𝑝 maxtrix. For images of size 256x256, 𝐽𝐽(𝑝𝑝𝑘𝑘)𝑇𝑇𝐽𝐽(𝑝𝑝𝑘𝑘)
is a 196608x196608 matrix for 3-parameter fitting and
131072x131072 matrix for 2-parameter fitting.

In contrast to the previous section, here the large sparse
matrix inversion involved in Eq. (5) can be solved
efficiently using iterative methods (as shown in section 3.2).
It should be noted that the computational burden of such
methods is mainly constrained by the application of the
matrix operator to be inverted. Update rules for the LM
regularization coefficient maps and stopping conditions are
the same as in the pixel-wise case (note that the stopping
condition now applies to the whole parameter map vector).

Page 2

3. GPU implementation

3.1. Pixel-wise Levenberg-Marquardt

Here we use 16x16 block size and 16x16 grid size to
cover the 256x256 image size. Each image pixel is
processed independently by a thread.

3.2. Vectorized Levenberg-Marquardt

In the vectorized version, the same steps for LM
algorithm are adopted, as shown in Figure 1. However, most
of the work is done on the GPU, Figure 1. In this case, a
large matrix 𝐽𝐽𝑇𝑇𝐽𝐽 needs to be calculated. Since 𝐽𝐽𝑇𝑇𝐽𝐽 is a block-
wise diagonal matrix. The image intensity at pixel 𝑖𝑖 only
affect the value of 𝐽𝐽𝑇𝑇𝐽𝐽 at (𝑖𝑖 + 𝑚𝑚 ∙ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝, 𝑖𝑖 + 𝑛𝑛 ∙ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝) where
𝑚𝑚,𝑛𝑛 ∈ {0,1, . .𝑁𝑁𝑝𝑝 − 1}.

Figure 1. Workflow of vectorized curve fitting

The workload of the vectorized LM algorithm is mainly
on the solving of the linear equation. The QR factorization
method from the standard CUDA library ‘cuSolver’ was
first tested. Then a conjugate gradient solver [11] was
implemented to accelerate the computation. The conjugate
gradient algorithm is an iterative way to solve the linear
equation and is more suitable for large scale problems
presented in this study. Our implementation relied on the
CUDA cuBLAS library.

4. Experimental results

4.1 Data description

16 healthy volunteers were included in the study. The
study protocol was approved by the ethics committee and
written informed consent was obtained from all volunteers.
For each volunteer, T1-weighted images were acquired
using an SR acquisition technique (SMART1Map
sequence). For 12 of them, data were also acquired using an
IR acquisition technique (MOLLI sequence). All data were
acquired with a General Electric 3T system (Signa HDxt,
GE Healthcare, Milwaukee, USA). One short-axis slice was
positioned in the mid-cavity and all acquisitions were
synchronized to the ECG. Subjects were instructed to hold
their breath during the acquisition, resulting in 8 (SR) to 11

(IR) T1-weighted images (256x256) being acquired.

4.2 Computing platform

All experiments were performed on a computer with
Intel® Xeon CPU at 3.30GHz, 64G physical memory. The
graphic card was a NVIDIA Quadro K4200, with 1344
cores, operating at 784MHz, a 256-bit memory interface,
and a 4GB GDDR5 GPU memory with memory bandwidth
of 173 GB/s.

4.3. Experiments

For pixel-wise curve fitting, the standard sequential c
code and the CUDA code were both compiled as a “mex”
file to be interfaced with Matlab (Mathworks, Natick, USA)
and the C code was used as a reference for the GPU
implementation.

For the vectorized curve fitting, initial experiments were
done in Matlab, and the Matlab implementation is used as
reference because the linear solver in Matlab is highly
optimized. Then GPU was enabled by replacing the array
variables by gpuArray ones in Matlab. Then the full CUDA
implementation was used to further optimize the speed.

4.4 Parallel performance

Figure 2 shows an example of the T1 maps of short-axis
cardiac image, obtained using the vectorized curve fitting
algorithm with different spatial regularization parameter.
The T1 maps get smoother as regularization increases.

Figure 2. T1 mapping with different regularization
parameter from the vectorized curve fitting

For the pixel-wise curve fitting, we compared the C code
(mex file) and the GPU implementation. Matlab is well
known for its inefficiency at for-loop, thus it is unfair to
compare to the Matlab implementation. Therefore, the
Matlab mex file is used as a reference. Figure 3 (a) shows the
computation time of each implementation. For one slice, the
standard C implementation estimates the T1 map in about
0.73±0.16 sec for 2 parameter fitting and 1.21±0.36 sec for
3 parameter curve fitting. The CUDA implementation cost
0.022±0.005 sec and 0.038±0.009 sec for 2- and 3-parameter
respectively. The acceleration factor is 32 and 31.

For the vectorized curve fitting, the original Matlab
implementation costs around 54.39±2.74 sec (3-parameter)
and 31.74±4.4 sec (2-parameter) to generate one T1 map.
After replacing the array variables with gpuArray ones,
which enables Matlab to calculate with GPU, the calculation
time was reduced to 7.3±0.1 sec (3-parameter) and 4.2±0.7

μ=1e-6 μ=0.001 μ=0.01 μ=0.05

Page 3

sec (2-parameter). CUDA implementation further reduces
the calculation time to 1.14±0.01 sec (3-parameter) and
0.84±0.02 sec (2-parameter). The acceleration ratio
compared to the original Matlab implementation is 47 for 3
parameter case and 38 for 2 parameter case.

Figure 3. Computation time for T1 mapping of 256x256
images, (a) pixel-wise fit; (b) vectorized fit

5. Discussion

In this paper, we implemented the Levenberg-Marquardt
algorithm on GPU using CUDA framework. The GPU
implementation significantly reduces the calculation time
for T1 mapping in both traditional pixel-wise solver and the
new vectorized solver.

In the pixel-wise solver, each kernel solves the curve
fitting problem for the corresponding pixel. The calculation
time is the longest time among all the pixels. The data
transfer only happens at the beginning, where images are
copied to GPU, and at the end, where the estimated T1
values are copied back to CPU. So the process is optimized.

The vectorized Levenberg-Marquadt cost longer time on
GPU. However, the benefit of vectorized Levenberg-
Marquardt algorithm is to include regularization in the
curve fitting process, so that the stability could be improved
by using the pixels from the neighborhood. In this
vectorized Levenberg-Marquardt algorithm, simply calling
the Matlab build-in GPU function could reduce the
calculation time by a factor around 7, thus is a good choice
for fast prototyping of new regularization schemes. More
advanced edge-preserving regularization schemes (such as
e.g. total variation[12] or Beltrami regularization[13]) may
be of interest and could be investigated using the proposed
framework. For larger datasets, e.g. larger image size, stacks
of contiguous 2D slices or even 3D images, the calculation
time will increase significantly, thus the full GPU
implementation is feasible and more efficient.

6. Conclusion

With GPU implementation, the computation time for T1
mapping can be significantly reduced. Further work
includes investigation of advanced regularization schemes
to improve the T1 estimation and larger scale clinical
evaluation to show the benefit of T1 mapping in myocardial
disease diagnosis.

Acknowledgements

This publication was supported by the European
Community’s Marie Curie Research Training Network

Programme (grant number 605162). The content is solely
the responsibility of the authors and does not necessarily
represent the official views of the EU.

References

[1] L. Iles et al., “Evaluation of Diffuse Myocardial Fibrosis
in Heart Failure With Cardiac Magnetic Resonance Contrast-
Enhanced T1 Mapping,” J. Am. Coll. Cardiol., vol. 52, no. 19, pp.
1574–1580, Nov. 2008.

[2] T. D. Karamitsos et al., “Noncontrast T1 Mapping for
the Diagnosis of Cardiac Amyloidosis,” JACC Cardiovasc.
Imaging, vol. 6, no. 4, pp. 488–497, Apr. 2013.

[3] V. M. Ferreira et al., “Non-contrast T1-mapping detects
acute myocardial edema with high diagnostic accuracy: a
comparison to T2-weighted cardiovascular magnetic resonance,”
J. Cardiovasc. Magn. Reson., vol. 14, no. 1, p. 42, 2012.

[4] D. R. Messroghli, A. Radjenovic, S. Kozerke, D. M.
Higgins, M. U. Sivananthan, and J. P. Ridgway, “Modified Look-
Locker inversion recovery (MOLLI) for high-resolutionT1
mapping of the heart,” Magn. Reson. Med., vol. 52, no. 1, pp. 141–
146, Jul. 2004.

[5] C. K. al et, “Saturation recovery single-shot acquisition
(SASHA) for myocardial T(1) mapping. - PubMed - NCBI.”
[Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/23881866. [Accessed: 29-
Aug-2016].

[6] P. Kellman and M. S. Hansen, “T1-mapping in the heart:
accuracy and precision,” J. Cardiovasc. Magn. Reson., vol. 16, no.
1, pp. 1–20, 2014.

[7] P. Kellman, H. Xue, K. Chow, B. S. Spottiswoode, A. E.
Arai, and R. B. Thompson, “Optimized saturation recovery
protocols for T1-mapping in the heart: influence of sampling
strategies on precision,” J. Cardiovasc. Magn. Reson., vol. 16, no.
1, Dec. 2014.

[8] K. LEVENBERG, “A METHOD FOR THE
SOLUTION OF CERTAIN NON-LINEAR PROBLEMS IN
LEAST SQUARES,” Q. Appl. Math., vol. 2, no. 2, pp. 164–168,
1944.

[9] D. W. Marquardt, “An Algorithm for Least-Squares
Estimation of Nonlinear Parameters,” J. Soc. Ind. Appl. Math., vol.
11, no. 2, pp. 431–441, Jun. 1963.

[10] J. J. Moré, “The Levenberg-Marquardt algorithm:
Implementation and theory,” in Numerical Analysis, vol. 630, G.
A. Watson, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
1978, pp. 105–116.

[11] A. V. Knyazev and I. Lashuk, “Steepest Descent and
Conjugate Gradient Methods with Variable Preconditioning,”
SIAM J. Matrix Anal. Appl., vol. 29, no. 4, pp. 1267–1280, Jan.
2008.

[12] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total
variation based noise removal algorithms,” Phys. Nonlinear
Phenom., vol. 60, no. 1, pp. 259–268, Nov. 1992.

[13] D. Zosso and A. Bustin, “A primal-dual projected
gradient algorithm for efficient Beltrami regularization,” Tech.
Report UCLA CAM Report 14-52, 2014.

Address for correspondence:
Freddy Odille
IADI (Inserm U947) - CIC-IT 1433
Bâtiment Recherche, CHRU de Nancy Brabois
54511 Vandoeuvre-lès-Nancy, FRANCE
E-mail: freddy.odille@inserm.fr

Page 4

	003-070

