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Abstract 

T1 mapping is an emerging MRI research tool to 
characterize diseased myocardial tissue. The T1 map is 
generated by fitting an exponential relaxation curve to the 
acquired image data. Levenberg-Marquardt algorithm is a 
standard way to solve this nonlinear curve fitting problem. 
However, the execution on the standard CPU can be time-
consuming and incompatible with clinical routine. In this 
paper, a GPU implementation is performed to reduce the 
computation time of the standard T1 mapping. In addition, 
a new vectorized approach is proposed to include spatial 
regularization in the curve fitting process to improve the 
robustness. The GPU implementation is validated on 
NVIDIA K42000 GPU using cardiac T1 data from 16 
volunteers. The computation time shows significant 
decrease in both pixel-wise and vectorized curve fitting.  
The pixel-wise curve fitting is accelerated by a factor of 30+ 
compared to the standard sequential C code and the 
vectorized curve fitting is improved by a factor of 47 and 38 
for 3-parameter and 2-parameter curve fitting compared to 
the Matlab code. 

 
 

1. Introduction 

T1 mapping is an emerging MRI technique to distinguish 
the diseased myocardial tissue from the normal tissue. 
Compared to conventional protocols such as late-
enhancement imaging, T1 mapping is a quantitative 
measurement that does not depend on the MR system. This 
tool has gained more and more attention in recent years[1–
3].  

A typical T1 map is generated by fitting an exponential 
model to a sequence of images for each pixel. The image 
signal is first flipped by an external radio frequency pulse, 
and then recovered to its equilibrium state. The relaxation 
process can be modeled by an exponential curve and T1 is 
the relaxation constant of this exponential curve. There are 
different MR sequences to generate the images, named as 
inversion recovery (IR)[4] and saturation recovery (SR)[5]. 
The difference between these two sequences is that the 
signal is flipped by 180 degree for IR and 90 degree for SR. 

Usually 8 images are acquired for SR and 11 images are 
acquired for IR. IR techniques such as MOLLI are more 
widely used due to their larger dynamic range and better 
precision (i.e. reproducibility), whereas SR techniques such 
as SASHA or SMART1Map provide more accurate T1 
values [6]. Different models have been proposed, a 2-
parameter model showing more stable curve fitting but 
lower accuracy, whereas a 3-parameter model is used to 
correct for the inhomogeneity of the initial flip angle [7].  

Due to the different imaging protocols, different 
formulas have been used to describe the relaxation curve. 
Table 1 gives a summary of the models. More detailed 
descriptions can be found in [7]. 

Table 1. Summary of T1 relaxation model 
 

 𝑁𝑁𝑝𝑝 Model 

Saturation-recovery 
3 𝑦𝑦𝑡𝑡 = 𝐴𝐴 ∗ �1 − 𝑒𝑒−

𝑡𝑡
𝑇𝑇� + 𝐶𝐶 

2 𝑦𝑦𝑡𝑡 = 𝐴𝐴 ∗ �1 − 𝑒𝑒−
𝑡𝑡
𝑇𝑇� 

Inversion-recovery 
3 𝑦𝑦𝑡𝑡 = �𝐴𝐴 ∗ �1 − 𝑒𝑒−

𝑡𝑡
𝑇𝑇� + 𝐶𝐶� 

2 𝑦𝑦𝑡𝑡 = �𝐴𝐴 ∗ �0.5 − 𝑒𝑒−
𝑡𝑡
𝑇𝑇�� 

 
The current implementation of the curve fitting can take 

a long time. For a typical T1 series of 8 images, the pixel-
wise curve fitting algorithm implemented on Matlab usually 
take several minutes. A notable delay is observed. Thus 
either a mask or a ROI is used to select the pixels that are 
clinically relevant, which results in a reduction of the 
computation time. A vectorized version of the algorithm is 
also proposed, which is aimed to include a spatial 
regularization term in the Levenberg-Marquardt 
optimization to improve the quality of resulting T1 maps. 

The GPU architecture is characterized by the single 
instruction multiple data (SIMD) feature, which allows 
operations on multiple data simultaneously. Nowadays, 
more and more applications achieve better performance by 
taking the advantage of the GPU architecture. In the pixel-
wise curve fitting, each pixel can be fitted individually, 
which is ideal for GPU. For the vectorized curve fitting with 
spatial regularization, the fitting of each pixel is no longer 
independent so the algorithm needs to be adapted. The 
essential part is to solve a large matrix inversion problem, 
which involves matrix multiplications and vector 
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operations, which can also fit GPU.  
In this paper, we present the GPU implementation of the 

pixel-wise and vectorized Levenberg-Marquardt algorithms 
using the NVIDIA CUDA framework. Section 2 introduces 
the mathematical background of the optimizer. Section 3 
describes the detail of the GPU implementation. Section 4 
shows the performance of the GPU implementation. 

 
2. Mathematical Background 

2.1. Levenberg-Marquardt Algorithm 

LM Algorithm [8–10] is a popular choice to solve non-
linear curve fitting problems. In our case, we consider  𝑁𝑁𝑚𝑚 
measurements for each pixel, 𝑁𝑁𝑚𝑚 = 8 for SR and 𝑁𝑁𝑚𝑚 = 11 
for IR. The unknown model can be denoted as 𝑓𝑓(𝑡𝑡;𝑝𝑝), 
where 𝑝𝑝 is the parameter set with 𝑁𝑁𝑝𝑝 unknowns and t is the 
inversion time. In our case 𝑁𝑁𝑝𝑝= 2 or 3. Then the problem 
can be formulated as 
𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝‖𝑓𝑓(∙;𝑝𝑝) − 𝑦𝑦‖2 (1) 

To solve this problem, an iterative method is employed. 
Starting from an initial guess of the parameters 𝑝𝑝𝑜𝑜, the 
method consists of searching for an optimal refinement of 
the parameters δp, by linearizing the cost function around 
the current estimate:  
 min
𝛿𝛿𝛿𝛿

‖𝑓𝑓(∙;𝑝𝑝 + 𝛿𝛿𝛿𝛿) − 𝑦𝑦‖2 = min
𝛿𝛿𝛿𝛿

�𝐽𝐽(𝑝𝑝)𝛿𝛿𝛿𝛿 − �𝑦𝑦 − 𝑓𝑓(∙; 𝑝𝑝)��2  (2) 

where 𝐽𝐽(𝑝𝑝) is the Jacobian matrix of 𝑓𝑓 with respect to the 
parameters, evaluated at the current guess p. 𝐽𝐽(𝑝𝑝) is a 𝑁𝑁𝑚𝑚 ×
𝑁𝑁𝑝𝑝 matrix. Therefore LM involves solving a sequence of 
linear least squares problems using a regularized inversion 
of the Jacobian matrix in order to calculate the following 
update of the solution at a given iteration k: 
𝛿𝛿𝛿𝛿 = 𝑝𝑝𝑘𝑘+1 − 𝑝𝑝𝑘𝑘 = (𝐽𝐽(𝑝𝑝𝑘𝑘)𝑇𝑇𝐽𝐽(𝑝𝑝𝑘𝑘) + 𝜆𝜆𝑘𝑘𝐼𝐼𝑑𝑑)−1𝐽𝐽(𝑝𝑝𝑘𝑘)𝑇𝑇�𝑦𝑦 − 𝑓𝑓(𝑝𝑝𝑘𝑘)�     (3) 

Where 𝐼𝐼𝐼𝐼 is the identity matrix and 𝜆𝜆𝑘𝑘 is the LM 
regularization coefficient. This regularization coefficient is 
adapted throughout iterations. The rationale of LM is to start 
with a large value of 𝜆𝜆𝑘𝑘, so the method behaves like a 
steepest gradient descent in the first iterations, then to 
decrease 𝜆𝜆𝑘𝑘as p approaches the solution, so the method 
behaves like a quasi-Newton method in the last iterations. 
Such schemes are thought to yield optimal convergence 
speed in the nonlinear optimization literature. Several 
variations of the LM technique have been proposed 
depending on the choice of 𝜆𝜆0, update rule for 𝜆𝜆𝑘𝑘  and 
stopping condition. Here we choose the following update 
rule [10]:  
�
𝑖𝑖𝑖𝑖 𝜌𝜌(𝑝𝑝) > 𝜀𝜀, 𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑘𝑘+1 = 𝑝𝑝𝑘𝑘 + 𝛿𝛿𝛿𝛿, 𝜆𝜆𝑘𝑘+1 = min(𝜆𝜆𝑘𝑘 × 2, 107)
 𝑖𝑖𝑖𝑖 𝜌𝜌(𝑝𝑝) ≤ 𝜀𝜀,𝑑𝑑𝑑𝑑 𝑛𝑛𝑛𝑛𝑛𝑛 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑝𝑝𝑘𝑘 , 𝜆𝜆𝑘𝑘+1 = max( 𝜆𝜆𝑘𝑘 2⁄ , 10−7) 

 
𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝜌𝜌(𝑝𝑝) = ‖𝑓𝑓(𝑝𝑝)‖2−‖𝑓𝑓(𝑝𝑝+𝛿𝛿𝛿𝛿)‖2

‖𝑓𝑓(𝑝𝑝)‖2−‖𝑓𝑓(𝑝𝑝)+𝐽𝐽(𝑝𝑝)𝛿𝛿𝛿𝛿‖2
 and iterations are stopped when  

‖𝑝𝑝𝑘𝑘+1 − 𝑝𝑝𝑘𝑘‖ ‖𝑝𝑝𝑘𝑘+1‖⁄ < 𝜏𝜏, with τ a given tolerance, or when a 
maximal number of iterations was reached. 
 
 
 

 

2.2. Vectorized Levenberg-Marquardt 
Algorithm 

In this section, we vectorize the LM algorithm by 
grouping the same operations that are performed multiple 
times on different data into a single operation performed 
once on a large array of data. It is therefore possible to 
incorporate constraints such as spatial smoothness to 
improve the processing itself. 

In order to formulate the vectorized version of LM for an 
image of Npix pixels, we use the same algorithm framework 
as described in the previous section. However we redefine 
y to be the whole acquired T1-weighted dataset, a vector of 
𝑁𝑁𝑝𝑝𝑝𝑝𝑥𝑥𝑁𝑁𝑚𝑚 elements, 𝑦𝑦 = {𝑦𝑦1,1,𝑦𝑦1,2, … ,𝑦𝑦𝑖𝑖,𝑘𝑘}, in which 𝑦𝑦𝑖𝑖,𝑘𝑘 is 
the 𝑘𝑘-th acquisition of pixel 𝑖𝑖. 𝑝𝑝 the concatenated parameter 
maps, a vector of 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁𝑝𝑝 elements, 𝑝𝑝 = {𝑝𝑝1,1,𝑝𝑝2,1,⋯ ,𝑝𝑝𝑖𝑖,𝑚𝑚} 
where 𝑝𝑝𝑖𝑖,𝑚𝑚 is the 𝑚𝑚-th parameter of pixel 𝑖𝑖 and 𝑓𝑓 is the 
fitting model function operating on images. Adding a spatial 
smoothness constraint leads to a vectorized version of Eq.   
(1): 

min
𝑝𝑝
‖𝑓𝑓(𝑝𝑝) − 𝑦𝑦‖2 + 𝜇𝜇‖𝐺𝐺𝐺𝐺‖2   (4) 

where μ is a scalar controlling the spatial regularization 
weight and 𝐺𝐺 is an operator returning a concatenation of the 
spatial gradients of each parameter map, computed by 
forward differences. 𝐺𝐺 is a sparse matrix of 
size 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁𝑝𝑝 × 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁𝑝𝑝, with 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑 the number of 
dimensions in the image (here 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑=2). This penalization 
term can reduce the local variations, thus making the 
method more robust to noise. The vectorized LM update 
formula becomes:  
𝛿𝛿𝛿𝛿 = (𝐽𝐽(𝑝𝑝𝑘𝑘)𝑇𝑇𝐽𝐽(𝑝𝑝𝑘𝑘) + Λ𝑘𝑘 + 𝜇𝜇𝐺𝐺𝑇𝑇𝐺𝐺)−1𝐽𝐽(𝑝𝑝𝑘𝑘)𝑇𝑇(𝑦𝑦 − 𝑓𝑓(𝑝𝑝𝑘𝑘)

− 𝜇𝜇𝐺𝐺𝑇𝑇𝐺𝐺𝑝𝑝𝑘𝑘)       
  (5) 

Note that the term 𝜆𝜆 𝑘𝑘𝐼𝐼𝐼𝐼 in Eq. (3) has been substituted 
by a diagonal matrix 𝛬𝛬𝑘𝑘, the diagonal elements of which 
contain the map of LM regularization coefficients at 
iteration k. 𝐽𝐽(𝑝𝑝𝑘𝑘) is now a large sparse matrix of size 
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁𝑚𝑚 × 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁𝑝𝑝. The element in row (𝑖𝑖 + 𝑘𝑘 ∗ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝) 
corresponds to 𝑦𝑦𝑖𝑖,𝑘𝑘, the intensity of pixel 𝑖𝑖 at inversion time 
k. Since 𝑦𝑦𝑖𝑖,𝑘𝑘 depends only on its own parameter 𝑝𝑝𝑖𝑖,𝑚𝑚(𝑚𝑚 ∈
[1,𝑁𝑁𝑚𝑚]), the 𝐽𝐽(𝑝𝑝𝑘𝑘)  is a large sparse matrix, concatenated of 
several diagonal matrices. 𝐽𝐽(𝑝𝑝𝑘𝑘)𝑇𝑇𝐽𝐽(𝑝𝑝𝑘𝑘) is then a 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁𝑝𝑝 ×
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁𝑝𝑝 maxtrix. For images of size 256x256,  𝐽𝐽(𝑝𝑝𝑘𝑘)𝑇𝑇𝐽𝐽(𝑝𝑝𝑘𝑘) 
is a 196608x196608 matrix for 3-parameter fitting and 
131072x131072 matrix for 2-parameter fitting. 

In contrast to the previous section, here the large sparse 
matrix inversion involved in Eq.   (5) can be solved 
efficiently using iterative methods (as shown in section 3.2). 
It should be noted that the computational burden of such 
methods is mainly constrained by the application of the 
matrix operator to be inverted. Update rules for the LM 
regularization coefficient maps and stopping conditions are 
the same as in the pixel-wise case (note that the stopping 
condition now applies to the whole parameter map vector). 
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3. GPU implementation 

3.1. Pixel-wise Levenberg-Marquardt  

Here we use 16x16 block size and 16x16 grid size to 
cover the 256x256 image size. Each image pixel is 
processed independently by a thread.  

 
3.2.  Vectorized Levenberg-Marquardt 

In the vectorized version, the same steps for LM 
algorithm are adopted, as shown in Figure 1. However, most 
of the work is done on the GPU, Figure 1. In this case, a 
large matrix 𝐽𝐽𝑇𝑇𝐽𝐽 needs to be calculated. Since 𝐽𝐽𝑇𝑇𝐽𝐽 is a block-
wise diagonal matrix. The image intensity at pixel 𝑖𝑖 only 
affect the value of 𝐽𝐽𝑇𝑇𝐽𝐽 at (𝑖𝑖 + 𝑚𝑚 ∙ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝, 𝑖𝑖 + 𝑛𝑛 ∙ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝) where 
𝑚𝑚,𝑛𝑛 ∈ {0,1, . .𝑁𝑁𝑝𝑝 − 1}.  

 
Figure 1. Workflow of vectorized curve fitting 
 

The workload of the vectorized LM algorithm is mainly 
on the solving of the linear equation. The QR factorization 
method from the standard CUDA library ‘cuSolver’ was 
first tested. Then a conjugate gradient solver [11] was 
implemented to accelerate the computation. The conjugate 
gradient algorithm is an iterative way to solve the linear 
equation and is more suitable for large scale problems 
presented in this study. Our implementation relied on the 
CUDA cuBLAS library. 

 
4. Experimental results 

4.1     Data description 

16 healthy volunteers were included in the study. The 
study protocol was approved by the ethics committee and 
written informed consent was obtained from all volunteers. 
For each volunteer, T1-weighted images were acquired 
using an SR acquisition technique (SMART1Map 
sequence). For 12 of them, data were also acquired using an 
IR acquisition technique (MOLLI sequence). All data were 
acquired with a General Electric 3T system (Signa HDxt, 
GE Healthcare, Milwaukee, USA). One short-axis slice was 
positioned in the mid-cavity and all acquisitions were 
synchronized to the ECG. Subjects were instructed to hold 
their breath during the acquisition, resulting in 8 (SR) to 11 

(IR) T1-weighted images (256x256) being acquired.  
 

4.2  Computing platform 

All experiments were performed on a computer with 
Intel® Xeon CPU at 3.30GHz, 64G physical memory. The 
graphic card was a NVIDIA Quadro K4200, with 1344 
cores, operating at 784MHz, a 256-bit memory interface, 
and a 4GB GDDR5 GPU memory with memory bandwidth 
of 173 GB/s. 

 
4.3. Experiments 

For pixel-wise curve fitting, the standard sequential c 
code and the CUDA code were both compiled as a “mex” 
file to be interfaced with Matlab (Mathworks, Natick, USA) 
and the C code was used as a reference for the GPU 
implementation.  

For the vectorized curve fitting, initial experiments were 
done in Matlab, and the Matlab implementation is used as 
reference because the linear solver in Matlab is highly 
optimized. Then GPU was enabled by replacing the array 
variables by gpuArray ones in Matlab. Then the full CUDA 
implementation was used to further optimize the speed.   

 
4.4 Parallel performance 

Figure 2 shows an example of the T1 maps of short-axis 
cardiac image, obtained using the vectorized curve fitting 
algorithm with different spatial regularization parameter. 
The T1 maps get smoother as regularization increases.  

 
Figure 2. T1 mapping with different regularization 
parameter from the vectorized curve fitting 
 

For the pixel-wise curve fitting, we compared the C code 
(mex file) and the GPU implementation. Matlab is well 
known for its inefficiency at for-loop, thus it is unfair to 
compare to the Matlab implementation. Therefore, the 
Matlab mex file is used as a reference. Figure 3 (a) shows the 
computation time of each implementation. For one slice, the 
standard C implementation estimates the T1 map in about 
0.73±0.16 sec for 2 parameter fitting and 1.21±0.36 sec for 
3 parameter curve fitting. The CUDA implementation cost 
0.022±0.005 sec and 0.038±0.009 sec for 2- and 3-parameter 
respectively. The acceleration factor is 32 and 31.  

For the vectorized curve fitting, the original Matlab 
implementation costs around 54.39±2.74 sec (3-parameter) 
and 31.74±4.4 sec (2-parameter) to generate one T1 map. 
After replacing the array variables with gpuArray ones, 
which enables Matlab to calculate with GPU, the calculation 
time was reduced to 7.3±0.1 sec (3-parameter) and 4.2±0.7 

μ=1e-6 μ=0.001 μ=0.01 μ=0.05 
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sec (2-parameter). CUDA implementation further reduces 
the calculation time to 1.14±0.01 sec (3-parameter) and 
0.84±0.02 sec (2-parameter). The acceleration ratio 
compared to the original Matlab implementation is 47 for 3 
parameter case and 38 for 2 parameter case. 

  
Figure 3. Computation time for T1 mapping of 256x256 
images, (a) pixel-wise fit; (b) vectorized fit  

 
5. Discussion 

In this paper, we implemented the Levenberg-Marquardt 
algorithm on GPU using CUDA framework. The GPU 
implementation significantly reduces the calculation time 
for T1 mapping in both traditional pixel-wise solver and the 
new vectorized solver.  

In the pixel-wise solver, each kernel solves the curve 
fitting problem for the corresponding pixel. The calculation 
time is the longest time among all the pixels. The data 
transfer only happens at the beginning, where images are 
copied to GPU, and at the end, where the estimated T1 
values are copied back to CPU. So the process is optimized. 

The vectorized Levenberg-Marquadt cost longer time on 
GPU. However, the benefit of vectorized Levenberg-
Marquardt algorithm is to include regularization in the 
curve fitting process, so that the stability could be improved 
by using the pixels from the neighborhood. In this 
vectorized Levenberg-Marquardt algorithm, simply calling 
the Matlab build-in GPU function could reduce the 
calculation time by a factor around 7, thus is a good choice 
for fast prototyping of new regularization schemes. More 
advanced edge-preserving regularization schemes (such as 
e.g. total variation[12] or Beltrami regularization[13]) may 
be of interest and could be investigated using the proposed 
framework. For larger datasets, e.g. larger image size, stacks 
of contiguous 2D slices or even 3D images, the calculation 
time will increase significantly, thus the full GPU 
implementation is feasible and more efficient.  

 
6. Conclusion 

With GPU implementation, the computation time for T1 
mapping can be significantly reduced. Further work 
includes investigation of advanced regularization schemes 
to improve the T1 estimation and larger scale clinical 
evaluation to show the benefit of T1 mapping in myocardial 
disease diagnosis. 
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