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Abstract 

During cardiopulmonary resuscitation, excessive 
ventilation rates reduce the chance of survival. We have 
developed a simple method to automatically detect 
ventilations based on the analysis of the capnography 
signal recorded with monitor-defibrillators. We used 60 
out-of-hospital cardiac arrest episodes that contained both 
clean and chest compressions (CC) corrupted 
capnograms. The detection algorithm first identified 
ventilation candidates in the capnography signal. Then, it 
characterized every candidate by features related to 
inspiration and expiration durations, and finally a decision 
system based on static thresholds was applied in order to 
determine whether each candidate corresponded to a true 
ventilation. Sensitivity (Se) and positive predictive value 
(PPV) for the clean set (3905 ventilations) were 99.8% and 
99.1%, respectively. With the corrupted set (6778 
ventilations) Se and PPV decreased to 85.3% and 85.6%, 
respectively. For the whole test set (10683 ventilations) Se 
and PPV were 90.6% and 90.6%, respectively. Detector’s 
performance clearly degraded when applied to corrupted 
episodes, this demonstrates the need for techniques to 
suppress CC artefact to improve ventilation detection. 

 
 

1. Introduction 

Cardiac arrest is the sudden cessation of the heart’s 
effective pumping function. Medical treatment of cardiac 
arrest involves early cardiopulmonary resuscitation (CPR) 
and early defibrillation. During CPR, ventilations and 
chest compressions (CC) provide oxygen to the lungs and 
help oxygenated blood circulate to the vital organs. High-
quality CPR is an important factor for the successful 
resuscitation of cardiac arrest patients. Current 
resuscitation guidelines recommend providing continuous 
CC and ventilations with a ventilation rate around 10 per 
minute for intubated patients in cardiac arrest [1]. 

Nevertheless, hyperventilation is often reported for in-
hospital and out-of-hospital cardiac arrest (OHCA) 
interventions [2,3]. Previous animal studies revealed that 
excessive ventilation rates resulted in decreased coronary 
perfusion pressures and poor outcomes [4]. 

Continuous guidance of satisfactory ventilation rate is 
usually achieved from the analysis of the capnography 
signal. Figure 1 depicts two capnograms in which two 
ventilation cycles can be observed. Capnography signal 
fluctuates during ventilation because of changes in the CO2 
partial pressure. The partial pressure increases during 
expiration (exhaled air contains more CO2) and decreases 
during inspiration. However, the presence of high-
frequency oscillations induced by CC in the capnogram is 
frequent during resuscitation [5]. An example of a 
capnogram corrupted by CC artefact is shown in Figure 
1B. Fast oscillations caused by the rhythmic compression 
of the chest overlap the capnogram waveform, highly 
distorting the signal. The presence of CC artefact may 
affect the reliability of capnogram-based ventilation 
detection [6]. 

 

 
Figure 1. OHCA capnography signal segments. A) Clean 
waveform; B) Capnogram corrupted by oscillations 
induced by CC. 
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In this study, we present a simple method for automated 
detection of ventilations during CPR, based on the analysis 
of the capnography signal acquired by monitor-
defibrillators during OHCA interventions. 

 
2. Materials and methods 

2.1. Database description and annotation 

The dataset used in this study was a subset (60 episodes) 
of a large database collected between 2011 and 2016 
maintained by Tualatin Valley Fire & Rescue (TVF&R), 
an advanced life support first response Emergency Medical 
Services (EMS) agency (Oregon, USA). Episodes were 
recorded using Heartstart MRx monitor-defibrillators 
(Philips USA) equipped with a real-time CPR feedback 
system (QCPR, Laerdal Medical, Norway). For each 
episode, we extracted three concurrent signals: the 
transthoracic impedance (TI) signal, acquired from the 
defibrillation pads; the compression depth (CD) signal 
obtained from the QCPR system; the capnogram, acquired 
using sidestream technology (Microstream, Oridion 
Systems Ltd., Israel). 

Signals were reviewed and annotated using a custom-
developed Matlab program. Capnograms were time-
shifted to compensate delay with respect to CD and TI 
signals. Three biomedical engineers independently 
classified the capnograms as clean or corrupted using the 
CD signal. A capnogram was classified as corrupted if 
evident CC artefact appeared during more than 1 min of 
the CC time. Experts also annotated the position of each 
ventilation using the TI signal as the reference. TI signal 
was low-pass filtered (2nd-order Butterworth, cut-off 
frequency of 0.6 Hz) to remove oscillations caused by CC. 
Thus, slow oscillations caused by ventilations could be 
more clearly observed in the filtered TI. Figure 2 shows an 
example of the annotation process. Ventilations were 
annotated in the position corresponding to a raise in the TI, 
associated to the inspiration onset (Figure 2, vertical lines). 
Filtered TI (top panel) appears overlapped to the raw TI 
(where both oscillations caused by CC and by ventilations 
are observed).  

 

 
Figure 2. Example of ventilation annotation.  
 

The resulting annotations were used as the gold standard 
to test the reliability of the automated capnogram-based 
ventilation detection algorithm. Clean episodes (30) were 
randomly and equally split into a training and a test set. 
Corrupted episodes were added to the test set. 

 
2.2. Capnogram-based ventilation detection 

Ventilations produce identifiable variations in the 
capnogram. A capnogram cycle is composed of a short 
inspiration time (starting with a CO2 rapid fall to zero) and 
a longer expiration time (slow raising expired CO2 
followed by a plateau). The basis of the ventilation 
detection algorithm is the identification of the changes 
between inspiration and expiration phases.  

The flowchart of the algorithm is presented in Figure 3, 
and can be described in three main steps: 

 

 
Figure 3. Flowchart of the ventilation detection algorithm. 
 
• Candidate identification: the algorithm searches 

for abrupt upstrokes,	𝑡#$% 	, and downstrokes, 𝑡&'% , as 
potential onsets of the expiratory and inspiratory 
phases, detected when the amplitude of the 
capnogram exceeds or goes below a fixed 
threshold, 𝑇ℎ*+$. 

• Feature extraction: every candidate is 
characterized by two features extracted from the 
capnogram signal: 
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- 𝐷./: Duration of the expiratory phase of a 
ventilation, 𝐷./ = 𝑡&'

% − 𝑡#$%  
- 𝐷23: Duration of the inspiratory phase of 

the next ventilation, 𝐷23 = 𝑡#$%45 − 𝑡&'
%  

• Candidate classification: each candidate is 
classified as true ventilation if the computed 
parameters are above certain thresholds. We 
applied static thresholds for the expiratory phase 
duration (𝑇ℎ./) and the inspiratory phase duration 
(𝑇ℎ23). 
 

Figure 4 provides a graphical example of the features 
computed by the algorithm. To take account for observed 
“double inhalation” effects (Figure 4B), the algorithm 
discards any candidate for which the inspiratory phase 𝐷23 
is below	𝑇ℎ23, and searches for the next downstroke and 
upstroke until 𝐷23 exceeds	𝑇ℎ23. 
 

 
Figure 4. Graphical definition of the detector parameters. 

 
2.3. Performance evaluation 

We evaluated the algorithm in terms of its sensitivity 
(Se) and its positive predictive value (PPV). Se was 
defined as the percentage of annotated ventilations that 
were correctly detected. PPV was defined as the 
percentage of detected ventilations that were correct. The 
maximum admissible tolerance for the position of the 
detection and the annotation was 500ms.  

We optimized the algorithm parameters with the clean 
training set to maximize Se while maintaining PPV above 
98%. 95% confidence intervals (95%CI) were computed 
for both metrics. 

 
3. Results 

The amplitude threshold 𝑇ℎ*+$ for candidate 
identification was fixed to 3	𝑚𝑚𝐻𝑔. Algorithm 
optimization was achieved for 𝑇ℎ23 = 0.11	𝑠 and 
𝑇ℎ./ = 0.8	𝑠. For the training set (4614 annotated 
ventilations), Se and PPV were 99.7% (95%CI, 99.5-99.9) 

and 99.0% (98.7-99.3), respectively. 
Table 1 summarizes Se and PPV results. For the whole 

test set, comprising 10683 ventilations, global Se and PPV 
were 90.6% and 90.6%, respectively. For the clean set 
(3905 ventilations) Se and PPV were 99.8% and 99.1%, 
respectively. However, with the corrupted set (6778) Se 
and PPV decreased to 85.3% and 85.6%, respectively. 
 
Table 1. Algorithm performance with the test set. n: 
number of annotated ventilations. 
 

 n Se (95% CI) PPV (95% CI) 
Whole set 10683 90.6 (90.0-91.1) 90.6 (90.0-91.1) 
 Clean 3905 99.8 (99.7-99.9) 99.1 (98.7-99.3) 
 Corrupted 6778 85.3 (84.4-86.1) 85.6 (84.8-86.4) 

 
Figure 5 shows some examples of algorithm’s 

performance. For each example, the capnogram with the 
detected ventilations is depicted in the top panel and the TI 
signal with the annotated ventilations is depicted in the 
bottom panel.  

 
Figure 5. Graphical examples of the algorithm’s 
performance. (A) Good performance; (B) Ventilation 
misdetection; (C) False positive; (D) Very poor 
performance caused by CC artefact. 
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4. Discussion 

Monitoring ventilation rate is one of the recommended 
uses of the capnogram during CPR, according to current 
resuscitation guidelines for advanced life support. 
However, the presence of high-frequency oscillations in 
the capnogram during CC may compromise the 
interpretation of the signal. Although a high incidence of 
this CC artefact has been reported in OHCA episodes [5], 
the influence of this artefact on the reliability of 
capnogram-based ventilation detection has not been 
previously studied. 

Our algorithm was simple and presented a very good 
performance with clean capnograms, not affected by CC 
artefact. One example of good performance was shown in 
Figure 5A. A few cases of misdetections (Figure 5B) or 
false positives (Figure 5C) had not a great impact on 
performance. 

However, Se and PPV significantly degraded when the 
algorithm was applied to the corrupted capnograms. CC 
artefact often appeared overlapping the capnogram from 
the plateau to the baseline and in the inspiration phase, 
making detection unreliable (Figure 5D).  

Other studies proposing alternatives for ventilation 
detection either with the TI signal or the capnogram have 
also mentioned the signal limitations due to the presence 
of CC artefact [6]. Our study has been the first to 
quantitatively characterize and measure the impact of CC 
artefact on OHCA capnograms. Our subsequent hypothesis 
is that automatic ventilation detection would improve if the 
artefact could be successfully removed from the 
capnogram. Designing filtering approaches for this aim 
will be our next step, exploring different alternatives. 

Our study has several limitations. First, the annotation 
of TI fluctuations was not straightforward during CPR. 
Some intervals were discarded because of unreliable TI 
signal (noise, disconnections) and filtering was needed to 
remove the CC artefact. The capnogram was sometimes 
used to confirm the presence of ventilations. No other 
reference signal was available to be used as an alternative 
gold standard. Second, ventilations delivered to patients 
with capnogram below the algorithm amplitude threshold 
(3	𝑚𝑚𝐻𝑔) cannot be detected. However, in our data this 
was rarely observed. Finally, data came from a single EMS 
system and so results may not be generalizable. We need 
to characterize this further with other EMS systems and 
monitor-defibrillators. 

 
 
 
 
 
 
 
 

5. Conclusions 

The important role of capnography waveform in 
ventilation rate monitoring during CPR is compromised by 
CC artefact superimposed on the capnogram. Further 
research should explore filtering techniques to suppress 
CC artefact in order to improve ventilation monitoring for 
corrupted capnograms. 
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