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Abstract 

Capnography is widely used by the advanced-life-
support during cardiopulmonary resuscitation (CPR). 
Continuous analysis of the capnogram allows guidance of 
adequate ventilation rate, currently 10 breaths/min for 
intubated patients. We used 60 out-of-hospital cardiac 
arrest episodes containing both clean and CC corrupted 
capnograms. Chest compressions (CC) induce high-
frequency oscillations in the capnography waveform 
impeding reliable detection of ventilations. Thus, a clean 
capnogram is essential for a better ventilation detection 
performance. To clean the capnogram, an adaptive noise 
cancellation notch filter was designed using a Least Mean 
Square algorithm to minimize filtering error. A fixed-
coefficient low-pass filter was optimized for comparison. 
For the whole test set, global Se/PPV improved from 
93.0/92.2% to 97.6/96.2% after adaptive filtering and to 
97.7/94.8% after fixed-coefficient filtering. For the clean 
subset, Se/PPV maintained stable and for the corrupted 
subset, Se/PPV improved from 84.8/84.0% to 95.2/92.7% 
and 95.4/90.3%, respectively. Filtering allowed reliable 
automated detection of ventilations in the capnogram even 
in the presence of CC oscillations during CPR. 
Nevertheless, further evaluation of these techniques in 
large datasets is warranted. 
 
 
1. Introduction 

Cardiac arrest is one of the main causes of death in 
developed countries. Patient survival to cardiac arrest is 
related to several factors. The most important is the early 
start of cardiopulmonary resuscitation (CPR) which 
combines chest compressions and ventilations. 
Hyperventilation is common during CPR for both in-
hospital and out-of-hospital cardiac arrests even among 
highly trained rescuers. Although resuscitation guidelines 
recommend providing 10 breaths per minute to intubated 

patients, some clinical studies have documented 
ventilation rates over 30 breaths per minute [1], which have 
been shown to impair hemodynamics and worsen 
outcomes at cardiac arrest. 

The latest resuscitation guidelines recommend the use 
of capnography waveform to monitor ventilation rate 
during CPR [2]. A clean capnogram is essential for a 
reliable analysis of patient response (Figure 1a). However, 
chest compressions (CC) administered to the patient 
frequently induce high-frequency oscillations 
(Figure 1b,c,d) in the capnogram [3] impeding reliable 
detection of ventilations [4]. 

 

 
Figure 1. OHCA capnogram segments. a) Clean 
capnograms; b,c,d) Corrupted capnograms with CC 
oscillations in the plateau, baseline and form the plateau to 
the baseline, respectively. 
 
 

In this context, the present paper describes the 
observational study performed to assess the performance 
of an adaptive closed-loop filter for suppressing CC 
oscillations in the capnogram during CPR. For this aim, we 
used a previously recorded out-of-hospital cardiac arrest 
(OHCA) registry. 
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2. Materials and methods 

2.1. Database description and annotation 

The dataset analysed in this study was a subset (60 
episodes) of a large OHCA registry collected and 
maintained by Tualatin Valley Fire & Rescue (TVF&R), 
an advanced life support first response Emergency Medical 
Services (EMS) agency in Oregon (USA). Episodes were 
recorded using Heartstart MRx monitor-defibrillators 
(Philips Medical Systems, Andover, MA, USA), equipped 
with a real-time CPR feedback system (QCPR, Laerdal 
Medical, Norway). Three concurrent signals were 
extracted: the transthoracic impedance (TI) signal, the 
compression depth (CD) signal and the capnogram. 

For each episode, capnograms were time-shifted to 
compensate delay with respect CD and TI signals. A 
capnogram was classified as corrupted if evident CC 
oscillations appeared during more than 1 min of CC time. 

Ventilation and CC instances were also annotated using 
the TI and the CD signal as the reference, respectively. TI 
signal was low-pass filtered (2nd-order Butterworth, cut-off 
frequency of 0.6 Hz) to remove oscillations caused by CC. 
Thus, slow oscillations caused by ventilations could be 
better observed in the filtered TI. Figure 2 depicts an 
example of the annotation process. Ventilations were 
annotated in the position associated to the inspiration onset 
(Figure 2, vertical lines) corresponding to a rise in the TI. 
CC instances were annotated in every relative maxima 
(Figure 2, red dots) corresponding to the maximum depth 
reached for each chest compression. 

 
Figure 2. Example of ventilation and CC instance 
annotation. 
 

Resulting ventilation annotations were our gold-
standard to test the reliability of the ventilation detection 
algorithm. Meanwhile, CC instances were used to control 
the configuration of the adaptive closed-loop filter. Clean 
and corrupted capnograms were randomly and equally split 
into a training and a test set. 

2.2. Closed-loop adaptive filtering 

Quality of the recorded capnogram is essential for a 
reliable analysis. However, a clean capnogram, where the 
different phases of the respiratory cycle are identifiable 
cannot always be observed during CPR [4,5]. Sometimes 
ongoing resuscitation efforts induce fast sinusoidal 
oscillations at different rates and with varying amplitude 
superimposed on the capnogram. The most common way 
to suppress this kind of artefact consist of using a notch 
filter. Nevertheless, in this study an adaptive noise 
cancellation notch filter is proposed, adjusting the filter to 
the same frequency and phase of the artefact [6]. A Least 
Mean Square (LMS) algorithm has been used. The main 
objective of this algorithm is to minimize the error 
sequence power (𝑒[𝑛]) produced between the filter 
response (𝑦[𝑛]) and the desired response (𝑑[𝑛]). 

The LMS filter, shown in Figure 3, is based on 
estimations, so it achieves an error power 𝐽(∞) higher than 
the minimum error power (𝐽+,-) reached by the Wiener 
solution. In order to control the coefficient correction 
applied from a previous iteration to the next one, the LMS 
algorithm uses a parameter called step size (𝜇). When 𝜇 is 
high, the adjustment is fairly fast, but the difference 
between the final error power 𝐽(∞) and the minimum value 
(𝐽+,-) is higher than with lower 𝜇 values. 

 

 
Figure 3. Adaptive noise cancellation LMS filter diagram. 

 
Following the diagram depicted in Figure 3, the main 

input, 𝑑[𝑛], is the capnography signal with induced CC 
oscillations, while the reference input, 𝑟[𝑛], is a pure cosine 
𝐶 · cos	(𝜔7𝑛 + 𝜃), where 𝜔7 = 2𝜋𝑓7/𝑓? and 𝑓7 is the instant 
frequency of the CC. When CC are provided, the cosine 
amplitude 𝐶 is ‘1’, and ‘0’ otherwise. 

The output of the adaptive filter, 𝑦[𝑛] is an estimation 
of the artefact and the output of the noise cancellation 
system, 𝑒[𝑛], represents the capnography signal without 
induced CC oscillations. Using 𝑒[𝑛] and the reference 
signals the LMS algorithm adjusts the impulse response of 
the filter used in the next iteration. 

The transference function (1) of this filter demonstrates 
that the noise cancellation system has the same properties 
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of a notch filter designed to supress	𝜔0. The unique design 
parameter of this adaptive filter is the 3dB bandwidth (2). 

 

𝐻 𝑧 =
𝑧C − 2𝑧 cos𝜔7 + 1

𝑧C − 2 1 − 𝜇𝐶C 𝑧 cos𝜔7 + 1 − 2𝜇𝐶C
				(1) 

 
𝐵𝑊HIJ = 2𝜇𝐶C	(𝑟𝑎𝑑) = LMN

OP
(𝐻𝑧)						                  (2) 

 
2.3. Performance evaluation 

We evaluated the performance of the adaptive filter in 
terms of its sensitivity (Se) and its positive predictive value 
(PPV) given by the ventilation detection algorithm and the 
gold-standard. Se was defined as the percentage of 
annotated ventilations that were correctly detected. PPV 
was defined as the percentage of detected ventilations that 
were correct. The maximum admissible tolerance for the 
position of the ventilation detection and the gold-standard 
annotation was 500ms. 

We optimized the adaptive filter parameter (𝐵𝑊HIJ) 
with the training set to maximize Se while maintaining 
PPV above 92%. A fixed-coefficient low-pass filter was 
designed and optimized (8th-order Butterworth, cut-off 
frequency of 1.5 Hz) for comparison. The 95% confidence 
intervals (95%CI) were computed for both metrics. 
 
3. Results 

Adaptive closed-loop filter optimization was achieved 
for 𝐵𝑊HIJ = 1	𝐻𝑧. For the training set (8102 ventilations), 
the Se and PPV were 98.4% (95%CI, 98.0-98.6) and 96.6% 
(96.2-97.0), respectively.  

Table 1 summarizes Se and PPV results for the LMS 
filter. Table 2 summarizes Se/PPV before filtering and 
after applying the fixed-coefficient filter. For the whole 
test set, global Se/PPV improved from 93.0/92.2% to 
97.6/96.2% after adaptive filtering and to 97.7/94.8% after 
fixed-coefficient filtering. For the clean subset, Se/PPV 
maintained stable (99.8/99.1% before, 99.8/99.1% and 
99.6/98.7% after, respectively). For the corrupted subset, 
Se/PPV improved from 84.8/84.0% to 95.2/92.7% and 
95.4/90.3%, respectively. 

Figure 4 shows the boxplots of Se and PPV values 
before and after filtering. For both fixed-coefficient and 
adaptive closed-loop the dispersion of Se and PPV was 
very low before as well as after filtering, in case of clean 
episodes. However, the dispersion of Se and PPV was quite 
relevant for corrupted episodes before filtering. 

 

Table 1. Se and PPV for the test set after adaptive filtering. 
n: number of annotated ventilations. 

 
 n Se (95% CI) PPV (95% CI) 
Whole set 7195 97.6 (97.3-98.0) 96.2 (95.7-96.6) 
 Clean 3905 99.8 (99.6-99.9) 99.1 (98.8-99.4) 
 Corrupted 3290 95.2 (94.4-95.8) 92.7 (91.8-93.6) 
 
Table 2. Se and PPV for the test set before filtering (left) 
and after fixed-coefficient filtering (right). 
 

 Before Fixed-coefficient 
 Se(%) PPV(%) Se (%) PPV (%) 
Whole set 93.0 92.2 97.7 94.8 
 Clean 99.8 99.1 99.6 98.7 
 Corrupted 84.8 84.0 95.4 90.3 
 
 

 
Figure 4. Se and PPV for the test set before filtering (NF, 
left), after fixed-coefficient filtering (FC, middle) and after 
closed-loop adaptive filtering (CL, right). Boxes show the 
median and IQR. Outliers are represented by dots 
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4. Discussion 

According to current resuscitation guidelines for 
advanced life support, ventilation rate monitoring during 
CPR is one of the recommended uses of the capnogram. 
However, the presence of high-frequency oscillations in 
the capnogram during CC may compromise a reliable 
detection of ventilations. 

Our adaptive noise cancellation filter presented a very 
good ventilation detection performance. Thus, the results 
demonstrate that filtering the capnogram in case of clean 
episodes maintains good results of Se and PPV, and 
improve them in presence of artefact. 

Comparing the results between adaptive and fixed-
coefficient filtering, it seems that fixed-coefficient filtering 
would be enough. Nevertheless, due to CC rate variability, 
a study with a larger database is needed, while our adaptive 
filter is CD signal dependent, allowing us to adjust our 
filter to any kind of CC rate, but this requires using a CPR 
feedback system providing this signal. 

Other studies proposing alternatives for ventilation 
detection with either the TI signal or the capnogram have 
also mentioned the signal limitations due to the presence 
of CC artefact [5]. Although the influence of CC artefact 
on the reliability of capnogram-based ventilation detection 
has been demonstrated [4], the suppression of this artefact 
has not been previously studied. 

Our study has been the first to quantitatively 
characterize and measure the impact of an adaptive CC 
artefact suppression on OHCA capnograms. Our 
subsequent hypothesis is that automatic ventilation 
detection would improve if the capnogram waveform 
could be successfully restored. Designing new filtering 
approaches for this aim will be our next step, exploring 
different alternatives. 

Our study has several limitations. First, the annotation 
of ventilations on the TI was not straightforward during 
CPR. We discarded some intervals because of unreliable 
TI signal (noise, disconnections) and filtering was needed 
to remove the CC artefact. No other reference signal was 
available as an alternative gold-standard. Finally, data 
came from a single monitor-defibrillator and so results 
may not be generalizable. We would need to characterize 
this further with other monitor-defibrillators. 

 
 
 

5. Conclusions 

Filtering allowed reliable automated detection of 
ventilations in the capnogram even in the presence of CC 
oscillations during CPR. Nevertheless, further evaluation 
of these techniques in large datasets is warranted given the 
variability of out-of-hospital CC and ventilation rates. 
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