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Abstract 

ECG lead-wire interchanges involving the right leg 

(RL) are not always detected. These RL lead-wire 

interchanges cannot be simulated in the same way as other 

lead-wire interchanges making database collection a 

necessity for algorithm development. Adult 12-lead ECGs 

from a single teaching hospital taken between January 

2008 and July 2012 were reviewed for lead-wire 

interchanges by an expert electrocardiographer. Lead-

wire interchanges were confirmed by comparison of serial 

ECGs. Positive interchanges included left arm / right leg 

(flat lead III, n=134) and right arm / right leg (flat lead II, 

n=139). A RL lead-wire interchange algorithm was 

developed by bootstrap aggregation of decision trees with 

5-fold cross validation. Test results were summed over the 

5-fold cross validation on the partitions not used for 

training. ECG features included maximum and minimum 

QRS and T-wave voltages for ECG leads I, II and III. The 

Haisty algorithm for RA-RL interchange was tested for 

comparison. Algorithm performance was quantified by 

sensitivity (SE), specificity (SP) and estimated positive 

predictive value (PPV) based on SE, SP and realistic 

prevalence. For a prevalence of 0.2%, performance in SE, 

SP and PPV was: Haisty, 94, 99.4, 24; tree RA-RL: 84, 

99.9, 57; tree LA-RL: 87, 99.9, and 57%. Even though SP 

was high for all three algorithms, the estimated PPVs were 

modest due to the low prevalence. Conclusion: Lead-wire 

interchanges involving the right leg wire can be detected 

with good sensitivity and high specificity. The higher 

specificity of the tree based algorithms results in more than 

twice the PPV of the Haisty algorithm. 

 

 

1. Introduction 

Misconnection of the electrocardiograph lead wires to 

the wrong electrodes, neglecting the problem of misplaced 

electrodes, has been well studied with many different 

automated approaches to detect the common interchanges 

[1]. Lead-wire interchange is important to detect because 

the error may lead to incorrect interpretation [2]. Many 

different techniques were applied to automated detection, 

some involving signal processing, and some using 

common amplitude based morphology measures of the 

QRS and P-waves [3,4]. Assumptions which simplify the 

algorithm development and validation are (a) chest wires 

are not exchanged with limb wires because the limb wires 

are much longer and (b) the ground wire is not exchanged 

with any other lead wires. These assumptions allow 

simulation of lead-wire interchange using ECGs that are 

free from lead-wire interchange. A database can be 

generated by reviewing serial tracings to prove no lead-

wire interchange. Once the ground wire (RL) is involved 

however, simulation is no longer a simple matter. Positive 

cases must be collected using true lead-wire reversals. 

While detection of limb lead wire interchange with RL 

is generally simple – one of the limb leads is nearly flat – 

the frequency is rare therefore an automated algorithm 

must have very high specificity to maintain a reasonable 

positive predictive value. Hedén found the frequency of 

RA-RL interchange to be just 0.3% (31/11,423) and the 

LA-RL and arm-for-leg interchanges were presumably 

lower frequency and lumped together with “other” [3]. 

The aim of this study was to design and validate an 

algorithm for interchanges of the RL wire with the left arm 

and right arm lead-wires. As part of the validation, the 

automated algorithm presented here was compared to the 

Haisty algorithm for RA-RL interchange [5]. 

 

2. Methods 

Study ECGs were a subset from a larger effort to collect 

examples of lead-wire interchange. In this subset, we 

concentrated on the RA-RL and LA-RL interchanges. 

ECGs were excluded because of excessive noise obscuring 

the P wave, paced rhythm, or P-wave superimposed on the 

previous T-wave. Arrhythmias such as atrial fibrillation, 

atrial flutter, supraventricular tachycardia, ectopic atrial 

rhythm and junctional rhythm are included however. ECGs 

with features consistent with potential RL lead wire 

interchange were compared with the patient’s previous or 

later ECGs to confirm the interchange. The control set 

without RL interchanges was allowed to contain 

interchanges limited to the precordial leads.  

The Philips DXL algorithm was used to generate a 

measurement matrix and a representative PQRST complex 
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for each ECG. Various features consistent with flat lead II 

and flat lead III were included in the analysis. Those 

features included R, S and T-wave amplitudes and peak-

to-trough voltages of QRS and T-waves. In addition, ECGs 

were pre-filtered with a single pole 40Hz lowpass filter as 

input to the Haisy algorithm. 

Bootstrap aggregation of decision trees or “bagged” 

trees was the method for classifying ECGs as RA-RL, LA-

RL or no lead wire interchange. With the bagged tree 

method, a decision tree is trained for each bootstrap 

resampling of the training set. The final classification is 

determined by vote across the set of trees. K-fold cross 

validation with 5 folds was used for training and testing. 

The training was performed on 4 folds and tested on the 

remaining fold. This was repeated across the 5 folds to end 

up with test results spanning the whole set. 

Algorithm performance was measured by sensitivity 

(SE), specificity (SP) and positive predictive value (PPV). 

Since the data set was selected as two separate groups, a 

positive and control group, PPV was estimated from SE, 

SP and prevalence (PREV) [6]. For comparison, the Haisty 

algorithm for RA-RL lead interchange was tested on the 

same dataset [5]. 

 

3. Results 

Algorithm performance is summarized in One of the 

design outputs of the bagged tree classifier is the 

importance of the features. The most important features 

were related to flat lead II and flat lead III as expected, (a) 

QRS peak-to-peak voltage, leads II and III, (b) T-wave 

peak-to-peak voltage, leads II and III and (c) ratio of QRS 

peak-to-peak amplitude in lead II vs. lead III. Interestingly, 

QRS axis was not an important feature.  

Table 1. While all three algorithms have high 

specificity, the estimated PPV is only moderate for the 

expected range of prevalence. The small difference in 

specificity between the Haisty and tree based RA-RL 

algorithms results in a doubling of PPV. The higher PPV 

of the tree based classifier can clearly be seen in Figure 1, 

PPV versus prevalence of lead-wire interchange. The 

prevalence of the RA-RL interchange is expected to be 

around 0.3% while the prevalence of the LA-RL 

interchange should be even lower. 

The confusion matrix in Table 2 shows the exact counts 

used to generate the performance numbers in One of the 

design outputs of the bagged tree classifier is the 

importance of the features. The most important features 

were related to flat lead II and flat lead III as expected, (a) 

QRS peak-to-peak voltage, leads II and III, (b) T-wave 

peak-to-peak voltage, leads II and III and (c) ratio of QRS 

peak-to-peak amplitude in lead II vs. lead III. Interestingly, 

QRS axis was not an important feature.  

Table 1. Note that the number of false positives is just 2 

for the tree based algorithms. 

One of the design outputs of the bagged tree classifier is 

the importance of the features. The most important features 

were related to flat lead II and flat lead III as expected, (a) 

QRS peak-to-peak voltage, leads II and III, (b) T-wave 

peak-to-peak voltage, leads II and III and (c) ratio of QRS 

peak-to-peak amplitude in lead II vs. lead III. Interestingly, 

QRS axis was not an important feature.  

Table 1. Algorithm performance 

Algorithm SE 

(%) 

SP 

(%) 

PREV 

(%) 

PPV 

(%) 

Haisty  

RA-RL 

93.5 99.4 0.3 32 

0.2 24 

0.1 14 

Tree based  

RA-RL 

84.2 99.9 0.3 66 

0.2 57 

0.1 39 

Tree based  

LA-RL 

86.6 99.9 0.3 67 

0.2 57 

0.1 40 

 

Table 2. Confusion matrix for the Haisty and tree based 

classifiers 

Ref \ 

Alg 

RA-RL 

Haisty 

N RA-RL 

tree 

LA-RL 

tree 

N 

RA-RL 130 9 117 0 22 

LA-RL NA NA 2 116 18 

N 9 1435 0 2 1441 

 

 

4. Discussion 

We presented the design and performance of a decision 

tree based algorithm for detection of lead-wire interchange 

between the right leg and arm electrodes. This algorithm 

compares favorably to the only published algorithm we 

Figure 1. PPV estimated from SE, SP and prevalence of 

lead-wire interchange. 
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could find for right arm and leg interchange by Haisty [5]. 

Our algorithm detects both arm interchanges with right leg. 

Although the sensitivity of our algorithm is lower for the 

RL-RA interchange, we feel the clinical acceptance will be 

higher because the PPV is much higher. When clinicians 

perceive a high number of false positives, often the 

algorithm will be turned off. The Haisty algorithm is very 

simple so it can be used in manual reading while our 

algorithm is suitable for an automated system, not manual 

reading.  

Figure 2 and Figure 3 show examples of lead wire 

interchange, both true positives and potential false 

positives. These examples were chosen not to display 

textbook examples of how the ECG morphology appears 

but to show the overlap of interchange and no interchange 

where false positives can clearly occur. The voltage 

difference between the legs is not truly zero, therefore the 

amplitude in leads II and III can approach zero but in some 

cases there is a significant non-zero amplitude as shown in 

the figures. When the frontal plane QRS and T-wave axis 

are near either 30 or -30 degrees, biphasic or low amplitude 

deflections in leads III and II can result. Those low 

amplitude deflections could appear to be lead-wire 

interchange.  

Automated lead wire interchange involving the right leg 

wire may not have high enough performance for Mason-

Likar (ML) electrode placement on the torso. Batchvarov 

explained clearly how the voltage difference between leg 

electrodes increases as the electrodes are moved up the legs 

onto the torso and closer to the ribs [1]. With higher 

voltages between leg electrodes, amplitude thresholds 

must also increase to maintain high specificity for RL 

interchanges but higher thresholds will result in more false 

negatives and lower sensitivity. Leaving the thresholds as 

is should decrease specificity for ML electrode placement. 

Performance may still be acceptable for ML placement in 

Figure 2. True positive (left) and false positive (right) 

RA-RL interchange.  Leads are presented in Cabrera 

order. Lead II should be flat with a RA-RL reversal. 
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Figure 3. True positive (left) and false positive (right) 

LA-RL interchange.  Lead III should be flat with a LA-

RL reversal. 
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some areas of the hospital where the prevalence of lead 

wire interchange has been shown to be higher because PPV 

increases with prevalence. Rudiger for instance found 4% 

prevalence for all lead-wire interchange in the ICU versus 

0.4% in the outpatient clinic [7]. For other lead wire 

interchanges, ML placement may not be a problem. Han 

found no significant impact due to ML placement for non-

RL limb lead interchange [8]. 

The low prevalence of this type of lead-wire interchange 

means that even a good specificity will result in a poor 

positive predictive value. To get that reasonable PPV and 

extraordinarily high specificity, either the control group 

must be very large or the design process must heavily favor 

low false positives over false negatives. In our case, the 

optimization for low prevalence involved setting the cost 

for a false positive to be roughly 5 times the cost of a false 

negative. The main problem is that there are still very few 

false positives and because the number is so low, we 

cannot say much about what signal or feature 

characteristics cause false positives. 

 

5. Conclusion 

Lead-wire interchanges involving the right leg wire can 

be detected by algorithm with good sensitivity and high 

specificity. The higher specificity of the tree classifier 

presented here resulted in more than twice the PPV of the 

Haisty algorithm. The important features were related to 

flat lead II and lead III as expected, both QRS and T-wave 

peak-to-peak amplitudes. 
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