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Abstract

This works presents an analysis in the changes in beat
morphology prior to in-hospital cardiac arrest. We have
used tensor decomposition methods to extract features
from the ECG signal. After preprocessing and R peak de-
tection, a tensor is constructed for each ECG signal by
segmenting the signal in individual heartbeats and stack-
ing them in a 3D manner. The result of the tensor decom-
position are 3 factor vectors corresponding to each tensor
dimension. The temporal vector, representing the standard
heartbeat over all leads in the signal, is further processed
to calculate 10 different features: 4 features characterizing
global changes in beat morphology and 6 detailed features
describing changes in timing and amplitude of the wave-
forms. We analyzed a dataset of 20 patients who experi-
enced a cardiac arrest in the intensive care unit at the end
of the recording. For each patient, a stable signal (in the
beginning of the recording) and an unstable signal (near
the cardiac arrest) were extracted and processed. Statisti-
cal analysis of the results in both time windows (e.g. sta-
ble and unstable) show significant changes in the values of
2 out of 4 global parameters and 4 out of 6 detailed pa-
rameters. The results indicate that the use of tensor-based
methods can be a robust way to characterize ECG changes,
and may be a useful tool in identifying patients at risk for
cardiac arrest.

1. Introduction

In-hospital cardiac arrests account for approximately
40% of all cardiac arrests in the United States. When a pa-
tient experiences a cardiorespiratory arrest, a *code blue’
is called, indicating a medical emergency or a person in
need of immediate medical attention. Since only 25% of
code blue patients survives to discharge [1], early identifi-
cation of patients at risk can be crucial to improve patient
outcome.

One strategy is to continuously monitor vital signs in pa-

Page 1

tients and identify patterns or changes in these signals that
are predictive for a later code blue in that patient. Since
ECG is already monitored in many patients, ECG mor-
phology changes are a good candidate for such analysis.
There have been many studies investigating the immedi-
ate mechanisms that lead to cardiorespiratory arrest, but
the preceding changes in the ECG signal on a longer time
scale are less well-studied. Previous studies focused on
bradyasystolic cardiac arrests [2] or made use of manual
measurements [3], which is a time-consuming task when
dealing with long-term recordings.

In this work we use tensor-based analysis methods, which
have been shown to give robust results in the detection of
T wave alternans [4] and myocardial infarction [5]. They
perform a multidimensional analysis which allows simul-
taneous analysis of different ECG leads.

The next section first gives an overview of the data and
methods used in this study. Section 3 presents the results
and discussion, followed by a conclusion.

2. Data and Methods

2.1. Data

We collected a dataset of 20 patients that experienced a
code blue due to a cardiopulmonary arrest in the intensive
care unit of the UCSF Medical Center. All data were col-
lected between 2013 and 2015. For all patients information
about the date and time of the code, the type of cardiac ar-
rest and whether they survive to discharge is available.
For each patient, ECG signals from the last 24 hours before
the code blue occurred were extracted from their medical
file. All ECG signals were sampled with a sampling fre-
quency of 240Hz and contain 7 standard ECG channels: I,
IL, 111, V, aVR, aVL and aVF. We selected two 1-hour pe-
riods from each recording: the first hour of the recording
(where the patient is presumed to be stable) and the last
hour of the recording right before the code blue. These pe-
riods will from now on be referred to as respectively the
stable signal or period and unstable signal or period.

ISSN: 2325-887X DOI:10.22489/CinC.2017.015-186



2.2.  Preprocessing

Since data collected in an intensive care unit typically
contains a fair amount of noise, preprocessing was neces-
sary to improve the signal quality. Baseline wander and
power line interference are therefore removed with respec-
tively a Chebyshev filter with cut-off frequency 0.5Hz and
a notch filter. After that, R peaks are automatically de-
tected using Pan-Tompkins [6]. Annotations with out-
liers in R peak amplitudes (caused by technical artifacts
or movement artifacts) that form large spikes in the signal)
were removed prior to further analysis. A subset of the R
peak locations were visually inspected to ensure that the
detection accuracy was sufficient.

2.3.  Tensor construction

All signals are processed with a non-overlapping mov-

ing window of 100 heartbeats. We will construct, decom-
pose and analyze a tensor for each window, which allows
to capture the dynamic changes in the ECG signal over
time. 100 heartbeats corresponds to a window length of
0.5-1.5 minutes, depending on the heart rate of the patient.
Since the focus of this study is the analysis of changes in
heartbeat morphology, we construct a tensor that consists
of all heartbeats in the analysis window. The ECG signal is
therefore segmented in individual heartbeats and each beat
is stacked in a frontal slice of the tensor. The ECG leads
form the second (spatial) dimension, the temporal profile
of each heartbeat the third dimension. Segmentation length
is determined for each window based on the mean RR in-
terval (RR) in that window. The segmentation window is
symmetrical around the R peak and the window length is
1.6 RR. Note that the segmentation window is rather long,
meaning that parts of the previous and/or next heartbeat
might be included in the segmentation. This is however
not a problem since we will detect the beginning and end
of each heartbeat in a later step.
The result is one tensor 7 for each analysis window. Each
tensor has 3 dimensions: the first dimension is the heart-
beats dimension with a fixed length of 100. The spatial
dimension correspond to the different ECG leads in the
signals and is here equal to 7. The temporal dimension
shows the time course of the individual heartbeat and has
a varying length for each tensor, depending on the current
heart rate.

2.4. Tensor decomposition

We decompose the constructed tensor 7 using Canoni-
cal Polyadic Decomposition (CPD). While this is consid-
ered the most simple tensor decomposition method, it also
leads to the most interpretable results. Since the goal is to
analyze parameters that can be easily conveyed to medical

doctors and patients, interpretability of the results is an ab-
solute necessity. CPD will decompose a tensor in a (min-
imal) sum of rank-1 terms. The number of rank-1 terms
is called the rank of the decomposition. Since we are in-
terested in the major changes in heartbeat morphology, the
decomposition rank is set to 1.
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Figure 1: Canonical Polyadic Decomposition [7]

Figure 1 shows a visual representation of this decom-
position on a 3D tensor. Note that R is 1 in our case, so
only one component consisting of 3 factor vector a;, by
and cy is calculated. The three factor vectors correspond
to the three dimensions of the original tensor: time, space
and heartbeats.

2.5. Feature extraction

The output of the tensor decomposition are 3 factor vec-

tors, one corresponding to each dimension (or mode) of the
tensor. The mode-1 vector shows the distribution over the
different ECG channels. The mode-2 vector of the tempo-
ral dimension can be seen as a template heartbeat for all
heartbeats included in the tensor. The mode-3 factor vec-
tor shows the differences among all heartbeats in a win-
dow. Since the analysis focuses on the changes in ECG
morphology, the mode-2 factor vector will be used for fur-
ther analysis.
Since the mode-2 factor vector corresponds to the aggre-
gate of all heartbeats in the analysis window, a standard
ECG delineator can be used to automatically detect the
peaks of the individual ECG waves. Here we opted for
the wavelet-based delineator developed by Martinez et al.
[8]. Only the peak of the P and T wave are detected since
the begin and end points of these waves are often hard to
distinguish. All annotations were inspected visually and
adjusted where necessary. 10 different features are derived
from these annotations: 4 global features that character-
ize the changes in beat morphology and 6 detailed features
that describe the changes in timing and amplitude of the
waveforms. For each feature in each window we calculate
the relative difference compared to a baseline value, e.g.
the value of the feature in the first analysis window.

2.5.1. Global features

Dynamic time warping (DTW) is used to examine the
changes in the global heartbeat morphology. DTW is a
technique to find an optimal alignment between two time
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segments in a non-linear way. A warping path that opti-
mally matches one segment with the other is iteratively de-
termined, and the length of this warping path can be used
as a similarity measure: the shorter the warping path, the
more similar the segments are. Here, DTW is used to mea-
sure the similarity between (part of) the baseline heartbeat
(e.g. the first mode-2 vector of the stable period) and (part
of) the mode-2 factor vectors of each analysis windows.
We examine the DTW distance for the complete heartbeat
and each ECG wave individually, so in total 4 different
time warping features are calculated:

1. DTWheartbeat
2. DTWp

3. DTWqrs

4, DTWr

2.5.2. Detailed features

The detailed features represent 6 standard time and am-
plitude measures that are commonly used in ECG analysis.
Note that since all signals are normalized in the prepro-
cessing stage, the final three parameters do not present the
ECG signal in mV, but rather the normalized amplitudes.
This facilitates comparison among subjects. The detailed
features are:

1. PR interval in ms (PR)

2. QRS interval in ms (QRS)

3. QT interval in ms (Q7Tc), corrected for heart rate using
Fridericia’s method [9]:

QT
VRR
4. Amplitude of the P wave (pAmp)

5. Amplitude of the R wave (rAmp)
6. Amplitude of the T wave (tAmp)

QTc=

ey

2.6.  Statistical analysis

The differences between the feature values of the stable
and the unstable periods are tested with a two-sample t-test
(p =0.01). Additionally, Cohen’s d is used to calculate an
estimate of the effect size:

d= :U/2stable - ,U/Qunstable (2)
\/Ustablc + Uunstablc)/2

with o and o respectively the mean and standard deviation
of the stable and unstable period. Effect sizes can be di-
vided in four groups according to their d-values: small (d
> 0.2), medium (d > 0.5), large (d > 0.8) and very large
(d > 1.3) [10].

Global features p-value | Cohen’s d
DTWheartbeat 0.0004 1.0379
DTWp 0.0156 0.7501
DTWqrs 0.0017 0.9475
DTWrp 0.0376 0.6517
Detailed features | p-value | Cohen’s d
PR 0.0001 1.1263
QRS 0.00004 1.1786
QTc 0.0323 0.6696
pAmp 0.0039 0.8821
rAmp 0.0047 0.8649
tAmp 0.1040 0.5151

Table 1: P-value and effect size estimates for all features.

3. Results and Discussion

All calculations were done using MATLAB R2017a.
Tensorlab, a toolbox for rapid prototyping of tensor de-
compositions, was used for all tensor calculations [7].
Table 1 presents the p-values and effect size estimates for
all global and detailed features. 2 out of 4 global features
and 4 out of 6 detailed features show significant differences
between the stable and the unstable periods. This is also
confirmed by Figure 2, which shows the boxplots for all
global (Figure 2a) and detailed (Figure 2b) feaures. Anal-
ysis of Cohen’s d shows that all parameters have at least a
medium effect size (d > 0.5). The features that show sig-
nificant differences between both methods all have large
effect sizes (d > 0.8), which indicate that they have a large
practical significance. This can be verified on Figure 2,
where the median values for these features show the most
obvious contrasts.

Further inspection of Figure 2 reveals that both both fea-
tures related to the QRS complex (DTWqrs and the QRS
interval length) have a significantly larger range in the un-
stable period than the other features. This suggests that the
physiological changes that lead to a cardiorespiratory ar-
rest affect the QRS complex more seriously than the other
waves. Since the QRS complex corresponds to depolariza-
tion of the ventricles, it can be an indication that ventricu-
lar detoriation plays a major role in the occurence of code
blues in an ICU environment.

From Table 1, we can also conclude that the PR interval
length is also an important parameter (p = 0.0001, Cohen’s
d=1.13). This confirms the findings by Hu et al. [2] which
also identified this parameter in a cohort of bradyasystolic
patients.

While the results presented in this study are promising,
the findings are still preliminary. In order to have clini-
cal use, additional analyses about the timing and direction
of these parameter changes are necessary. Furthermore we
will increase the number of patients included in the study.
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Figure 2: Boxplots for all global (a) and detailed (b) parameters, indicating the median, 25th and 75th quantile for both

periods (stable in light blue, unstable in dark blue)

Finally the type of cardiorespiratory arrest will be taken
into account, since it is expected that cardiac arrests caused
by ventricular fibrillation will have different characteristics
than arrest caused by pulseless electrical activity.

4. Conclusion

In this paper we present an analysis of the changes in the
ECG signal in patients prior to a in-hospital cardiorespira-
tory arrest. Tensors and tensor decompositions are used to
represent and analyse the ECG signal. Statistical testing of
10 derived parameters (4 global and 6 detailed parameters)
shows that 6/10 features show significant differences be-
tween a stable period in the beginning of a recording and
a unstable period directly prior to the code blue. While
the presented results are preliminary, they show that ten-
sors are a suitable way to analyse heartbeat morphology
changes.
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