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Abstract

We present a method for modelling case-specific action
potentials (APs) based on a simple model for electric wave
propagation combined with an optimization procedure that
searches the best combination of three model parameter
values for a given action potential. The method is applied
to a set of 70 APs, showing deviations around 10%. This
method can be useful for prognosing possible pathological
scenarios of a specific patient, based on data from electro-
cardiagrams.

1. Introduction

For modeling the propagation of action potentials in the
human atria, various models have been developed, which
take into account the influence of the numerous ionic cur-
rents flowing through the cell membrane. Aiming at a
simplified description, the Bueno-Orovio-Cherry-Fenton
(BOCF) model [1] for electric wave propagation in the
ventricle has been adapted to atrial physiology [2].

Recently, we studied this adapted BOCF model with
respect to its capability to accurately generate spatio-
temporal excitation patterns found in anatomical and spiral
wave reentry [3]. We found that characteristic features of
the reentrant excitation patterns seen in the more detailed
model proposed by Courtemanche, Ramirez and Nattel
(CRN) model [4] are well captured by the BOCF model. In
particular, we showed that the size and conduction velocity
of the spiral waves produced with both models differ by a
constant difference smaller than 10%. Moreover, we also
compared APs generated with the BOCF model with APs
produced with the CRN model [5] and discussed strengths
of the BOCF model, namely its lower computational costs
for extensive simulations and its reduced number of differ-
ential equations.

A natural step forward is to use these strengths for pa-
rameter adjustment to patient-specific electrophysiological
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Figure 1. (a) Illustration of one AP and the five properties
used to characterize it. (b) Distribution of the amplitudes
of the 103 APs (see text) together with (c)-(f) the distri-
bution of the AP durations at 90%, 50%, 40% and 20% of
the APA, respectively. Vertical solid and dashed lines indi-
cate respectively maximum and minimum limiting values
of the admissible range that can be properly modelled with
the BOCF model (see Fig. 2).

conditions. Here, we introduce such method to model spe-
cific action potentials with a pre-given amplitude, duration
and shape by only adjusting a few parameters.

The specific data to be analyzed comprehends a set of
103 APs collected at the University of Dresden in the
group of Prof. U. Ravens. Figure 1(a) shows one AP that
we characterize by its action potential amplitude (APA)
and AP durations (APDs) at four amplitude levels, namely
at 90%, 50%, 40% and 20% of the APA. The distribution
of each of these five AP properties for the full set of APs
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is given in Figs. 1(b)-(f).

2. The model

The BOCF model has four state variables. One is
the transmembrane voltage V , that is rescaled to a nor-
malized voltage u, such that V = VR(1 + αu), where
VR = −84.1 mV is the resting voltage, and α = 1.02
[2]. The three other variables v, w and s describe the gat-
ing of (effective) net currents through the cell membrane.
These four state variables evolve according to a system of
reaction-diffusion equations,

∂tu = D∆u+ Jfi(u, v) + Jsi(u,w, s)

+Jso(u) + Jstim , (1a)

∂t(v, w, s) = (E(u, v), F (u,w), G(u, s)) , (1b)

where Jfi(u, v) represents a fast inward sodium-like cur-
rent, Jsi(u,w, s) a slow inward calcium-like current, and
Jso(u) a slow outward potassium-like current; Jstim is an
external stimulus current.

Defining by Ha(x) the Heaviside jump function at x =
a (Ha(x) = 1 for x ≥ a and zero otherwise) andHa(x) =
1 − Ha(x), the currents and the functions E, F and G in
Eq. (1b) are

Jfi =
v

τfi
(u− θv)(uu − u)Hθv (u), (2a)

Jsi =
ws

τsi
Hθw(u), (2b)

Jso = − u

To(u)
Hθw(u)

− Hθw(u)

τso1 + (τso2 − τso1)Qso(u)
, (2c)

Jstim = jstim(H0(t∗)−H0(t∗ + T )) , (2d)

E(u, v) = −v −H
θ−v (u)

T−v (u)
Hθv (u)

− v

τ+
v
Hθv (u) , (2e)

F (u,w) = − w − w∞
τ−w1 + (τ−w2 − τ

−
w1)Q−w(u)

Hθw(u)

− w

τ+
w
Hθw(u) , (2f)

G(u, s) =
1

Tθw(u)
(Qs(u)− s) , (2g)

where

Tx(u) = τx1H
θx(u) + τx2Hθx(u) , (3a)

Figure 2. (a) Time-scale τfi as a function of the APA for
τsi = 10.7 ms and τso1 = 73.7 ms. (b)-(e) Dependence of
the four APDn on τsi and τso1 for fixed τfi = 0.0835 ms.
The meshes of points (black bullets) indicate the simula-
tion results, and the surfaces refer to the fits of the meshes.
All quantities are given in ms.

Qx(u) =
1

2

(
1 + tanh [kx(u− ux)]

)
, (3b)

w∞ =

(
1− u

τw∞

)
Hθo(u) + w∗∞Hθo(u) .(3c)

Here, uu = 1.0089 and uso = 0.592093 are reference
values, θv = 0.3 and θw = 0.18171 are threshold values
of u corresponding to the opening and closing of the ion
channels, τo1 = 250.03, τo2 = 16.632, τso2 = 6.5537,
kso = 2.9748, τ−v1 = 16.3, τ−v2 = 1150, τ+

v = 1.7026,
τ−w1 = 79.963, τ−w2 = 28.136, τ+

w = 213.55, τw∞ =
0.2233, τs1 = 9.876, and τs2 = 4.2036 are characteris-
tic time for the opening (+) and closing (−) of the ionic
channels (all in units of ms), w∗∞ = 0.902, ks = 2.2268,
and k−w = 60.219 are scaling parameters, us = 0.81568
and u−w = 9.991 × 10−3 are the respective shape param-
eters for the hyperbolic tangent in function Qx(u), and
θ−v = 0.1007 and θs = θ2 are additional threshold val-
ues for the opening and closing of the ionic channels. For
modeling single-cell action potentials, we set D = 0.

3. Main parameters for fitting APs

Recently, we showed that the four differential equations
(1a) and (1b) can be effectively reduced to a system of two
differential equations [5], that depends on the voltage u,
together with exponentially decaying functions of the re-
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maining gating variables. This reduction shows that the
three characteristic times τfi, τsi and τso1, in Eqs. (2a)-(2c),
which fix the typical duration of the respective currents,
are the most important parameters for the shape-modelling
of APs. We take them as parameters for fitting a specific
AP and keep all other parameters fixed. The values of the
fixed parameters, given in the previous section, refer to the
set determined for the electrically remodeled tissue due to
atrial fibrillation [2, 6].

Through simulations of the BOCF model it is possible
to extract the dependence of the APA and the APDn with
n = 20, 40, 50 and 90 on the three characteristic times.
Figure 2 shows these dependencies for a wide range of
the parameter values, which we refer to as the “admissible
range” in the following. Most of specific APs exhibit APA
and APDn values that are covered by the admissible ranges
shown in Fig. 2. The APD90, however, becomes difficult to
be correctly reproduced by our setting, if it exceeds 250 ms
(vertical line in Fig. 1(a)). We refrained from modelling
APs with APD90-values beyond this limit in the given
setup. The limiting values are indicated in Fig. 1(b)-(f) by
vertical lines. They correspond to the following ranges of
the characteristic times: τfi ∈ [0.002, 0.21], τsi ∈ [5, 21.5]
and τso1 ∈ [40, 110] (in ms). Most of the APAs and APDs
can be caught within these ranges.

It was shown [5] that the APA depends only very weakly
on τsi and τso1, and all APDs are almost independent of τfi.
As shown in Fig. 2(a), the APA can be well described by
a quadratic function of τfi and the APDn are well fitted by
cubic polynomials of τsi and τso1 [5], as demonstrated in
Figs. 2(b)-(e).

Because the quadratic fit of τfi is monotonic in the ad-
missible range of APA, it is uniquely determined by the
APA. As for the other two times, we determine optimized
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Figure 3. Two illustrative examples of the optimization
procedure for fitting APs.
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Figure 4. Distribution of the values of the three times
obtained from the optimization procedure. Vertical lines
indicate limiting values of the admissible range that can be
properly modelled with the BOCF model (see Fig. 2).

values of tausi and tauso1 by minimizing the function

F(τsi, τso1) =
∑
n

[
APDn(τsi, τso1)−Dn

]2
, (4)

where Dn are the measured values of the APDn. The
minimization procedure is carried out numerically by em-
ploying the Levenberg-Marquadt algorithm. An analysis
showed that the Hessian of the APDn(τsi, τso1) is pos-
itive definite in the admissible parameter range. Thus,
one expects to find a unique minimum of the function
F(τsi, τso1).

4. Modeling of patient-specific APs

In this section we apply and evaluate the method by
modelling the set of collected APs. Figure 3 shows two
examples with the measured AP (solid black line) and
the corresponding fit (dashed red line). By applying the
method to the APs one obtains values for the three times,
whose distribution is plotted in Fig. 4. The vertical lines
indicate the respective boundary values (cf. Fig. 2). We
discarded the APs with APDn or APA values outside the
admissible ranges, leaving 70 measured APs left for our
modeling. Moreover, from this reduced set we took out six
APs, having parameter values outside the ranges simulated
with our framework (see vertical lines in Fig. 4).

For quantifying the deviations of the modelled APs from
the measured ones, we compute their relative difference
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Figure 5. Box-plot of the distributions of deviations be-
tween the measured and the modelled AP parameters and
of the ∆A values quantifying the overall shape agreement.

based on the L2-norm, namely

∆A =
||Am(t)−Ae(t)||L2

||Ae(t)||L2

, (5)

whereAe(t) andAm(t) denote the measured and the mod-
elled AP as a function of time, defined as ||A(t)||L2

≡(∫ tf
ti
A2(t)dt

)1/2

. The initial time ti and the final time
tf are defined as the instants where u(ti) = u(tf ) = θ0

with θ0 = 0.015 taken as a reference value. The time ti
characterizes the rising flank of the AP and tf .

Figure 5 shows that the typical deviations are of the or-
der of 15%. Moreover, we also compute the relative errors
of the APA and APDn defined as

∆ =
|Xm −Xe|

Xe
, (6)

with X representing either the APA or one of the APDn.
Deviations up to 20% are observed for the shortest APDn,
namely for n = 20 and 40. The APD90 and the APA show
mean deviations around 5%.

5. Conclusions

We applied a method for modelling patient-specific APs
based on the BOCF model, by adjusting three character-
istic times, which are associated with the effective net
sodium, calcium and potassium ionic currents introduced
in this model. The method was applied to a set of 70 mea-
sured APs and showed deviations of the AP shape mod-
eling of around 10%. It demonstrates the possibilities of
parameter adjustment of an atrial physiology model to re-
produce AP shapes with a given amplitude, width and du-
ration. While some large deviations are observed for short

APDs, the overall deviation of the modeled from the mea-
sured APs is comparable to that seen for AP modelling
based on different detailed models (cf., e.g., Fig. 4 in [7]).

Showing a high flexibility for case-specific applications,
our method can be useful for clinical purposes, because
the three characteristic times retrieved by the underlying
optimization procedure are directly connected to the ion-
type specific net currents. AP shapes showing pathological
features will be reflected in the values of one (or more)
times outside acceptable ranges, thus enabling to identify
the class of membrane currents (sodium, calcium and/or
potassium), where pathologies are likely to be present.
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