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Abstract

Automatic localization of the exit site of ventricular
tachycardia (VT) can improve the efficiency and efficacy
of catheter ablation. Because the exit site of the VT gives
rise to its QRS complex on electrocardiogram (ECG), it
is possible to build a predictive model to directly localize
the exit of a VT from its 12-lead ECG. In previous works,
prescribed features such as QRS integrals have been used
to build such models. In this paper, we propose a deep
network to automatically extract more discriminative fea-
tures from QRS complex to localize the origin of ventric-
ular activation. To improve the resolution of localization
compared to previous works based on a small number of
pre-defined segments, we localize the origin of ventricu-
lar activation as 3D coordinates. Model training and test-
ing were performed on 12-lead ECG data of 1012 dis-
tinct pacing sites, collected from patients during routine
pace-mapping procedures. Compared with the use of pre-
scribed QRS-integral as an input feature, the presented
deep model achieved an improvement of localization accu-
racy by approximately 4 millimeters (~26%) on average.

1. Introduction

Sustained ventricular tachycardia (VT) often involves
a life-threatening electrical “short circuit” that travels
through and exits from a myocardial scar to depolarize the
rest of the ventricles [1]. Radiofrequency catheter abla-
tion is considered an effective approach to cut off the short
circuit by destroying its exit [1]. The QRS complex of
12-lead electrocardiograms (ECG) can be used to infer the
location of a VT exit site. In current clinical practice,
this is done as a part of the routine pace-mapping proce-
dures, where pacing is applied to different sites of the my-
ocardium, and the VT exit is considered to be near the site
at which pacing reproduces the QRS morphology of the
VT on all 12 ECG leads.

Instead of this trial-and-error” practice, a real-time au-
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tomatic localization of the exit of an VT directly from its
ECG data may improve the efficiency and efficacy of ab-
lation procedures. This idea is visible in existing research
works [2] [3] [4] [5] where, from a large amount of ECG
data obtained during routine pace mapping procedures, a
predictive model is built to infer the localization of the
origin of ventricular activation. However, limited local-
ization accuracy has been obtained due to the following
factors: limited localization resolution, hand-engineered
features and inter-subject variability in ECG data. First,
the localization is often done on a small number of pre-
defined segments that impose a low resolution in the local-
ization results. Second, a limited number of prescribed fea-
tures - typically the time-integral of the QRS complex - are
used to summarize its time varying morphology. Finally, to
build an accurate prediction model from a large population
is challenged by the fact that the ECG signals have signif-
icant physiological and pathological variations across in-
dividuals. The recent work in [6] demonstrated the use
of patient-specific models to predict the 3D coordinates of
the VT exit. It addresses the issue of a low-resolution lo-
calization by departing from segment-based models, and
it avoids inter-subject variations in ECG data by building
a model for each subject. However, such patient-specific
models are difficult to implement in clinical practice be-
cause it necessitates the collection of a sufficient amount
of pace-mapping data on each patient before the prediction
can be made.

In this paper, we aim to overcome the above challenges
by exploiting the power of deep learning models in local-
izing VT exits from 12-lead ECG data. First, limited lo-
calization resolution problem is addressed by predicting
the x-y-z coordinate of VT exits instead of pre-defined
segments. Second, a deep framework is presented to ex-
tract the features automatically from the QRS complex of
ECG signals rather than using hand-engineered features.
Finally, inter-subject variations are disentangled within the
deep network using our previously developed approach
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Figure 1. The standard prototype of LV endocardial sur-
face

[71, where a supervised contrastive regularization is added
to a denoising autoencoder (DAE) to separate factors of
variations during the learning of hidden features. The pro-
posed model is trained with 12-lead QRS complex along
with the corresponding pacing locations. Its localization
accuracy was evaluated on a separately held out dataset.
The improvement of localization accuracy obtained by the
presented model is demonstrated against prediction using
linear regression with pre-scribed QRS integral features.
Moreover, the increment in localization resolution by the
presented model is presented against localizing VT exit
into pre-defined segments.

2. Methods

A machine learning model is built to learn a relationship
between the 12-lead QRS complexes (model input) and the
origin of the corresponding ventricular activation (model
output). The ECG data and their corresponding origins of
ventricular activation can be obtained during routine pace
mapping procedures on patients undergoing catheter abla-
tion of VT. All these pacing sites are registered to a com-
mon LV endocardial model as shown in Fig 1.

2.1. Feature Based Approach

In existing works [5] [6], QRS integrals are common
features used to localize the VT exit. As a baseline, we
build the linear regression model to predict the z-y-z co-
ordinates of the pacing sites from 120-ms QRS integrals
extracted from all 12 ECG leads. QRS integrals are ex-
tracted by trapezoidal approximation. All QRS integrals
from 12 ECG leads are used as input x is mapped to the
output coordinates y via a linear model y = Wx + b,
where parameters {W, b} are fitted using a least squares
approach [6].
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Figure 2. Denoising Autoencoder. Z stands for corrupted
input, y is latent representation, z is reconstructed input
while W, W' are weight matrices.

2.2. Denoising Autoencoder (DAE)

Denoising autoencoder [8] learns to extract a robust low-
dimensional representations of the raw input data by learn-
ing to reconstruct the clean input from a noise-corrupted
version. As shown in Fig. 2, for an input vector x € R, we
first corrupt the input data into X ~ ¢p(X|x), with binary
masking or Gaussian additive noises. With the training
data, the DAE then learns to map the corrupted X to a low-
dimensional hidden representation y € [0, l]d/ through a
deterministic transformation y = fy(WTx + b), parame-
terized by 6 = {W b} where W is a d’ x d weight ma-
trix, b is the bias vector and fy is a sigmoid function. The
resulting latent representation y is then “reconstructed”
back to z € R through z = go(W'Ty + b’) where
0’ = {W' b’}, with an objective to minimize the aver-
age reconstruction error over n training examples:

1 & o
* gl s (i) ,3)
6*,0 argg}g,ln;llr(x ,z) (1)

The loss function L, could be least squares or cross en-
tropy functions. It is optimized using stochastic gradient
descent [8]. In this way, a meaningful low-dimensional
feature of the input data can be learned.

2.3. Two-Way DAE

We previously developed a two-way factored DAE [7] to
disentangle the factor of variations in ECG signals. Specif-
ically, the encoding process maps the input data to two
different latent representations, h and m, representing re-
spectively the patient-specific factor and the factor that rep-
resents the common relationship between origins of ven-
tricular activation and QRS data. For QRS data originating
from nearby locations, their hidden representations m are
assumed to be similar regardless if the data are collected
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from the same patient; otherwise, m is assumed to be dif-
ferent. On the other hand, for QRS data from the same
patient, their hidden representation h is assumed to be sim-
ilar regardless of the origin of activation. To facilitate such
pair-wise comparison, an additional contrastive loss [9] is
used as a semi-supervised training criterion for the DAE.
We randomly generate training pairs X? = (x(, x())
from the training data. Each pair has labels e? = (eF,, €}),
where eX is 1 if the pair shares the same label on factor
*, and O otherwise. For e’,'; (patient related label), it can be
easily determined from the patient label for the pair of data.
Given the coordinates of an QRS data pair, e?, is =1 if the
distance between the activation origins of the pair of data
is less than 18mm, and e?, = 0 otherwise; the threshold of
18mm is determined from the average segment radius of
the 16-segment model [5].

The overall objective function for training the proposed
DAE consists of the standard reconstruction loss (1) and
the contrastive loss (L y):

L(XP) = L.(X") + aL;(XP) )

where « is tuned during optimization by stochastic gradi-
ent descent (SGD) with back propagation.

2.4. Supervised fine-tuning

Similar to [8], the learned encoding portion as described
in section 2.1 or 2.2 is stacked into a three-layer deep net-
work as shown in Fig 3. The highest-level feature learnt is
used as the input to a linear regression model. The parame-
ters of this network are fine-tuned together using stochastic
gradient descent. In this way, we are yielding a deep neural
network subject to supervised learning.

3. Experiments

To evaluate if a deep learning model will improve the
accuracy in localizing the VT exit from 12-lead ECG,
we compare the three models described in section 2 on a
large set of pace-mapping data obtained from 39 patients.
Specifically, the localization accuracy is measured in terms
of the Euclidean distance between the predicted coordi-
nates and those recorded during the pace-mapping proce-
dure. Additionally, we compare the localization accuracy
between 1) a deep network with standard DAE without
separating factors of variations and 2) a deep network with
the two-way factored DAE in first layer followed by stan-
dard DAEs and 3) separating factors of variation through-
out all the layers.

3.1. Data processing

All ECG data are pre-processed for noise removal and
baseline correction. Besides, the selection and extraction
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Figure 3. Fine-tuning of deep network for predicting the
coordinate of VT exits. The parameters of the whole sys-
tem are fine-tuned to minimize the mean square error be-
tween input and target using stochastic gradient descent.
m®) with k = {1,2,3} represents the learned representa-
tion at k" layer.

of QRS complexes are manually carried out to avoid mo-
tion artifacts, ectopic beats and non-capture beats. The
final input signal is in the form of one QRS beat from
12 leads, each down-sampled in time to 100. Moreover,
as multiple quality beats can be extracted from each ECG
recording, we obtain in-total 16848 sets of ECG data with
z-y-z coordinates labeled for each pacing site.

3.2. Model training

The dataset is divided into training, validation and test
set: 10292, 3017 and 3539, respectively containing data
from 22, 5 and 12 patients. Data from same patient is en-
sured to belong to only one of the three sets. The fine-
tuned network consists of three hidden layers and each
layer is pre-trained with both standard DAE and factor-
disentangling DAE. Hyperparameters including learning
rate for SGD and noise level for input corruption are se-
lected based on their performance on the validation set.
After pre-training, the whole network is fine-tuned on the
clean training set as described in Section 2.4.

3.3. Results and discussion

The accuracy of the coordinate prediction by separating
factors in the deep hierarchy (Deep-fDAEs) along with the
other three models are presented in Table 1. Compared
with the use of pre-scribed QRS-integrals as input features
for linear regression, high-level features learned from the
deep network of standard DAEs (sDAE) improved the pre-
diction accuracy by approximately 3 millimeters (~23%)
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Table 1. Prediction accuracy of the proposed approach
versus three comparision methods. We report mean er-
ror (in millimeters) and its 95% confidence interval on the
training, validation and test set.

Method | QRS integral sDAE fDAEs Deep-fDAEs
training 15.06+0.13  11.27+0.11  11.754+0.11  10.89+0.11
validation | 15.16 £0.27  13.07+£0.22 12.88+0.26  12.84+0.25
test 15.09+0.23  12.13 £0.21 11.954+0.21 11.83+0.21

on the test set. By adding the factor-disentangling DAE
in the first layer (fDAE), the prediction accuracy is further
improved by ~1%. When the factor-disentangling DAEs
are stacked into a deep network, the prediction accuracy
in overall is improved by 4 millimeters (~26%) at an av-
erage of 11.83 mm. In comparison, when localizing the
exit of VT into one of the pre-defined ten [7] or sixteen
segments [5], the resolution of localization cannot exceed
~25mm or ~18mm respectively. Therefore, an improve-
ment in the resolution of localization was achieved com-
pared to segment-based classification.

The large improvement of accuracy from a linear regres-
sion model to the deep DAE model demonstrates the po-
tential of a deep learning model in automatically mining
more discriminative features from ECG data compared to
pre-scribed features. In comparison, the addition of factor-
disentanglement achieved a smaller improvement of accu-
racy. This limited improvement can be associated with the
fact that the model only saw 22 patients during training,
a relatively small sample size for the purpose of learning
inter-subject variations. Moreover, as the data are collected
from actual pacing procedures during ablation, the number
of pacing sites collected from each patient was limited and
covered only a small portion of the myocardium in and
around the region of scar. That means the training data for
each patient is also limited not only in quantity but also in
coverage of the prediction space. This further increases
the difficulty of learning individual-level adjustments to
the common relationship between QRS and the origin of
ventricular activation. Future work will continue our effort
in data collection on more patients in order to truly realize
the potential of deep learning in this application.

4. Conclusion

In this paper, we demonstrate the use of a deep model
to predict the z-y-z coordinate of the origin of ventricular
activation in the left ventricular endocardium surface from
12-lead ECG data. We show that a coordinate-based pre-
diction can improve the resolution of the localization. We
also show that the use of a deep model can mine more dis-
criminative features for better localization accuracy com-
pared to pre-scribed features such as QRS-integrals. This
improvement in resolution and accuracy may enhance the
efficiency and efficacy of catheter ablation therapies.
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