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Abstract 

Atrial Fibrillation (AF) is the most common cardiac 
arrhythmia in the world, associated with an increased risk 
of thromboembolic events and an increased mortality rate. 
Due to the frequently asymptomatic nature of AF, a 
significant portion of AF is subclinical. To address this 
issue, we tested the feasibility of detecting AF using 
photoplethysmographic signal acquired from a non-
invasive earlobe photoplethysmographic sensor. 
Photoplethysmographic recordings were taken from AF 
patients before and after cardioversion procedures, along 
with recordings from a healthy control group. This signal 
was analyzed and multiple parameters of heart rate 
variability were calculated. The parameter with the 
highest discriminant capability resulted in a sensitivity and 
specificity of 90.9%. These results show that using earlobe 
photoplethysmographic signal is a viable, inexpensive, and 
non-invasive AF detection method that could be invaluable 
in detecting subclinical AF.  

 
 

1. Introduction 

AF affects more than 2.2 million people in the United 
States alone, making it the most common cardiac 
arrhythmia in the world. [1,2] AF is associated with 
diminished quality of life, congestive heart failure, 
devastating thromboembolic events, [3] and an increased 
mortality rate. [4] AF frequently manifests itself silently, 
which causes a significant portion of AF patients to be 
undiagnosed, known as subclinical AF. [5] Most studies 
estimate the rate of subclinical AF to be between 10%-40% 
of all AF patients. [6] Identifying subclinical AF patients 
is critical because it enables early detection of AF, 
therefore shifting the overall paradigm around the 
management of AF patients. 

AF is defined by the WHO-ISFC task force as 
“irregular, disorganized, electrical activity of the atria.” [7] 
Current AF detection methods usually require ECG 
recordings, which are difficult to obtain for long-term 

continuous monitoring. Current technologies, such as ECG 
patches, are limited to a couple of weeks use because of the 
rapidly degrading quality of the electrical properties of the 
skin electrodes. 

In this work, we propose to develop an automatic 
method for the detection of AF based on a wearable 
photoplethysmographic (PPG) sensor. [8] A PPG sensor 
monitors only the hemodynamic profile of the cardiac 
rhythm, rather than an ECG that directly monitors the 
electrical activity of the heart. Despite this limitation, PPG 
sensors are appealing because they only require one small 
area of skin contact to capture their signal. They can be 
embedded in earphones or jewelry, and represent a non-
invasive method for acquiring long-term continuous 
cardiac monitoring signal. [9,10] 

Current ECG-based algorithms for the detection of AF 
have, at best, an expected sensitivity and specificity on the 
order of 95%. [11-12] PPG-based methods for AF 
detection have been developed and reported by others. Lee 
at al. [13] reported a technique to detect AF using PPG 
signal acquired by a smartphone light and camera. Ferranti 
et al. [14] developed an AF detection method using PPG 
signal acquired from a wrist worn device. These methods 
have a similar sensitivity and specificity to the ECG-based 
methods. 

We conducted a clinical study involving patients going 
through electrical cardioversion to treat AF. [15] We 
measured the PPG signal continuously in these individuals 
using a single earlobe PPG sensor (HeartSensor HRS-
07UE, BINAR Integrated Mobile Systems, Washington, 
USA). Subsequently, we developed an automatic 
algorithm for pulse detection, and calculated various HRV 
parameters to ultimately compare their values during sinus 
rhythm in healthy people, and in patients during AF 
(baseline pre-cardioversion) and sinus rhythm (post 
successful cardioversion). We evaluated and report the 
discriminant power of the proposed method.  

 
2. Methods 

2.1. Study Population 
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There were three study cohorts: healthy, AF patients 
before electrical cardioversion (Pre-CV), and the same AF 
patients recorded after electrical cardioversion (Post-CV). 
The AF patients in the Pre-CV/Post-CV groups were 
scheduled for a cardioversion treatment for AF 
independent of this study. All data were recorded from 
subjects and patients at Strong Memorial Hospital, 
University of Rochester (Rochester, NY). The study 
protocol was reviewed and approved by the local 
Institutional Review Board. 

 
2.2. Signal Conditioning 

A PPG signal is characterized by successive peaks and 
valleys representing the systolic and diastolic phases of the 
cardiac output, respectively. The distance between two 
adjacent maxima is a close approximation of the RR 
interval, known as the inter-systolic interval (SS interval).  

In some PPG signals, a double peaked signal can be 
observed. This second peak follows the systolic peak and 
is caused by pressure equalization processes in the artery. 
[16] In addition to this second peak, the raw PPG signal is 
usually affected by various noise components including 
baseline wandering and transient noise due to sensor 
movement. Therefore, we implemented specific pre-
processing steps for removing these noise and trend 
components, as well as filtering the second peak.  

The PPG signal also includes regular fluctuations due to 
breathing. To reduce these fluctuations, the ‘detrend’ 
function from MATLAB was used to remove linear trends 
from the PPG signals. [17] Once these respiratory 
fluctuations were reduced, the data is normalized using the 
standard score method, aka the Z-Score. [18] Then a 
bandpass filter is applied with lower and upper cutoff 
frequencies of 0.5 Hz to 5.5 Hz. These frequencies 
correspond to heart rates of 30 BPM to 330 BPM, which 
encompasses the minimum and maximum expected human 
heart rates. [19] This wide bandwidth is essential as AF 
rhythm results in a wider bandwidth than sinus rhythm. An 
example of the signal conditioning results is presented in 
Figure 1. 

 
Figure 1. The process of conditioning the PPG signal 

 

In addition to signal conditioning, an algorithm was 
developed to automatically detect flat signal. This ensured 
the algorithm could run automatically. This algorithm 
compared the power of the signal within the bandwidth to 
the power of the signal outside the bandwidth. [20] If the 
ratio between these powers indicated low signal power 
within the bandwidth, the signal was not further processed.  

 
2.3. Extraction of Pulsatile Signal 

To quantify the irregular irregularity of the heart rate, 
the pulsatile signal must be extracted from the processed 
PPG. A cardiac beat is represented by a maximum in the 
PPG signal; therefore, all maxima were found in the PPG 
signals, irrelevant of amplitude or proximity to 
surrounding maxima. This approach alone greatly 
overestimated the number of cardiac beats. 

To address this challenge, a maxima verification 
algorithm was developed to ensure each maximum 
appropriately indicated a cardiac beat. This algorithm 
determined if a maximum is a local maximum, eventually 
labelling the detected local maxima as cardiac beats. A 
local maximum was defined as a maximum centered on a 
window of 2N samples where N = 60 samples, or 0.2 
seconds. [19]  

 
2.4. Measurements of pulse irregularity 

We calculated four parameters to quantify HRV using 
on the pulsatile signal. The avg∆SS parameter is the 
average of absolute value of the differences between each 
successive SS interval (∆SS). [21] The pNNx parameter is 
a modification of pNN50, a popular HRV measure used in 
the analysis of heart rhythms for many different cardiac 
conditions. However, Meitus et al. [22] have shown that 
for pNNx, using x < 50ms is often more effective at 
distinguishing between physiological and pathological 
groups. Therefore, we tested various values of x for the 
pNNx parameter on our learning set to maximize the 
discrimination between AF and non-AF rhythm. The 
SDSS parameter is the standard deviation of SS intervals. 
The CVSS parameter is calculated by dividing the SDSS 
by the average SS interval. [18] 

It was necessary to set thresholds for the parameters 
described above to distinguish between Non-AF and AF 
cohorts. This was done using Receiver Operating 
Characteristic (ROC) curves. [23] The Non-AF group 
included the data from healthy subjects and from Post-CV 
patients after successful cardioversions. The AF group 
included the Pre-CV data and two recordings from subjects 
who did not successfully cardiovert to sinus rhythm. Once 
the thresholds were found for each of the four parameters, 
the optimal parameter was used to calculate the final 
accuracy of the proposed method. 
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3. Results 

3.1. Study Population 

There were 110 total data recordings available in the 
learning dataset: 46 healthy, 30 Post-CV, and 34 Pre-CV 
AF recordings. Of these 110 data samples, 3 were found to 
have flat signals, most likely due to poor device fitting or 
technical malfunction, and 1 sample was too short (under 
4 minutes). Excluding these 4 samples yielded a learning 
dataset of 106 PPG signals from: 44 healthy subjects, 29 
Post-CV, and 33 Pre-CV AF patients. 

All subjects included both men and women aged 18 
years or older. Healthy subjects (n = 44) were 38.1 +/- 12.4 
years old. Of the healthy group: 58.8% were female (n = 
25) while 43.2% were male (n = 19), 70.5% were White (n 
= 31), 29.5% were African American (n = 13), and 6.8% 
were Hispanic or Latino (n = 3). Subjects scheduled for 
cardioversion (n = 33) were 64.1 +/- 11.0 years old. Of the 
CV group: 84.8% were male (n = 28), 15.2% were female 
(n = 5), 100% were White (n = 33), and 3.0% were 
Hispanic or Latino (n = 1). 

The validation dataset included 55 PPG signals from: 13 
healthy subjects, 21 Post-CV, and 21 Pre-CV AF patients. 
In the validation dataset, healthy subjects (n = 13) were 
45.4 +/- 17.6 years old. Of the healthy group: 92.3% were 
female (n = 12) while 7.7% were male (n = 1), 84.6% were 
White (n = 11), 7.7% were African American (n = 1), and 
7.7% were more than one race (n = 1), and 7.7% were 
Hispanic or Latino (n = 1). Subjects scheduled for 
cardioversion (n = 21) were 68.6 +/- 11.7 years old. Of the 
CV group: 76.2% were male (n = 16), 23.8% were female 
(n = 5), and 100% were White (n = 21). 

 
3.2.  Pulse Measurement 

The PPG data recorded in this study had a duration of 
5.4 +/- 0.3 minutes across the study groups. The signal was 
acquired at a 300 Hz sampling frequency, resulting in 
97,792 +/- 5634 samples per recording. 

We computed the values of the parameters CVSS, 
SDSS, avg∆SS, and the optimal x value for the pNNx 
parameter on the learning dataset. Eleven values of x were 
tested for the pNNx parameter: from 10ms to 60ms by 
steps of 5ms. This optimization process showed that x = 
35ms is associated with the best classification 
performances.  

The pNN35 parameter had the best classification 
performance on the learning dataset, achieving high 
sensitivity and specificity. Therefore, we implemented a 
detection method using the pNN35 parameter to calculate 
final sensitivity and specificity results when identifying 
AF. We summarized the results from the validation step in 
the Table 1. This table provides: the average and standard 
deviations of the parameter values for the AF and non-AF 

recordings, p-values determined by a two-independent 
sample t-test, and the threshold (THR) computed using 
ROC curves on the learning dataset. [18] It also provides 
sensitivity and specificity values for each parameter on the 
validation dataset.  
 
Table 1. Statistical Analysis of Validation Dataset. 

 
The area under the pNN35 ROC curve was 0.95. Using 

pNN35: patients in the healthy cohort were correctly 
identified a 100% rate, patients in the Pre-CV cohort were 
correctly identified at a 90.5% rate, and patients in the 
Post-CV cohort were correctly identified at an 85.7% rate. 
 
4. Discussion 

These results clearly show that the proposed method 
enables accurate, automatic detection of AF using a non-
invasive earlobe PPG sensor. 

As previously discussed, this technology has the 
potential to shift the current paradigm around the 
management of AF patients by enabling the detection of 
AF in subclinical patients. As AF persists without 
treatment, the likelihood of a stroke event significantly 
increases; early diagnosis of subclinical AF is the foremost 
solution to this problem. [3] With an earlobe cardiac 
monitoring device, continuous cardiac measurements can 
be taken anytime a patient is wearing the device. These 
measurements can be used to identify subclinical AF 
patients earlier than using current monitoring technologies 
that, in general, require a prescription. 

This algorithm could be embedded into wearable 
devices to provide continuous cardiac monitoring 
capabilities. One of the key strengths of our method is the 
limited constraints on the subjects. An earlobe PPG signal 
can be taken anytime the patient is wearing the device, 
unlike a PPG acquired by a smartphone camera in which 
the patient needs to actively read their pulse, or an ECG 
method that is often administered in a controlled setting 
with medical personnel. [13]  

Our method could be improved upon by using an 

Parameter 
(units) 

AF 
(n = 22) 

Non-AF 
(n = 33) 

P-
value 

THR Sens Spec 

pNN35 
(%) 

83.1 +/- 
14.7 

32.0 +/- 
26.4 

1.8 * 
10-12 

74.3 90.9 90.9 

CVSS 
(nu) 

0.24 +/- 
0.07 

0.10 +/- 
0.08 

1.3 * 
10-8 

0.17 90.9 81.8 

SDSS (s.) 0.19 +/- 
0.06 

0.09 +/- 
0.07 

1.1 * 
10-7 

0.13 90.9 72.7 

avg∆SS 
(s.) 

0.21 +/- 
0.08 

0.06 +/- 
0.07 

2.4 * 
10-9 

0.14 81.8 87.9 
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accelerometer to detect excess sensor movement during 
data recording, as demonstrated by Ferranti et al. [14] 
Scanning the PPG signal for ventricular premature 
contractions (VPCs) could also improve our method. The 
algorithm failed on two recordings in the learning dataset. 
Both recordings contained large numbers of VPCs that 
mimicked the pulse irregularity indicative of AF. VPCs 
have certain telltale characteristics that may allow them to 
be identified and removed from the PPG signal. [24]  

This technology is promising and could be implemented 
into future wearable devices. AF, while not curable, is 
treatable yet its combination of an asymptomatic nature 
and increasing prevalence make it a dangerous condition. 
The proposed technology can indicate when a person is 
experiencing an AF episode which has the potential to shift 
the current paradigm of AF management and treatment. 
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