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Abstract

Non-invasive reconstruction of infarcts inside the heart
from ECG signals is an important and difficult problem due
to the need to solve a severely ill-posed inverse problem. To
overcome this ill-posedness, various sparse regularization
techniques have been proposed and evaluated for detecting
epicardial and transmural infarcts. However, the perfor-
mance of sparse methods in detecting non-transmural, es-
pecially endocardial infarcts, is not fully explored. In this
paper, we first show that the detection of non-transmural
endocardial infarcts poses severe difficulty to the preva-
lent algorithms. Subsequently, we propose a novel sparse
regularization technique based on a variational approx-
imation of L0 norm. In a set of simulation experiments
considering transmural and endocardial infarcts, we com-
pare the presented method with total variation minimiza-
tion and L1 norm based regularization techniques. Exper-
iment results demonstrated that the presented method out-
performed prevalent algorithms by a large margin, partic-
ularly when infarction is entirely on the endocardium.

1. Introduction

Inverse electrocardiography (ECG) refers to the non-
invasive reconstruction of electrical activity inside the
heart from ECG signals. It has been shown that inverse
ECG can be used to detect or quantify myocardial infarcts
[1, 2]. The main challenge in inverse ECG is the need to
solve a severely ill-posed problem. To address this prob-
lem, various regularization techniques have been used in
the literature. For the purpose of infarct detection, sparse
regularization in the spatial gradient domain of the ac-
tion potential has been shown to be effective [2]. It is
based on the idea that between depolarization and repo-
larization (i.e. ST segment of ECG), the gradient of action
potential is expected to be close to zero everywhere ex-
cept along the border of an infarct in between viable active
tissue and necrotic inactive tissue. L1 norm penalty was
used to enforce sparsity to the gradient of action potential
and epicardial potential was obtained as inverse solution
in [3,4]. In [1,2], total-variation minimization was used to

enforce sparsity and the inverse solution obtained was ap-
plied to quantify transmural infarcts at different locations
of the heart. However, the performance of sparse regu-
larization based inverse ECG methods in the presence of
nontransmural infarcts, especially endocardial infarcts, re-
mains largely unexplored.

In this paper, we first examine the performance of preva-
lent sparse inverse ECG methods in detecting transmural
versus endocardial infarcts and show that they perform
poorly in the endocardial case. We then present a novel
L0-norm based sparse regularization method and com-
pare its performance against prevalent algorithms regard-
ing detection of infarcts in both transmural and endocardial
cases. L0-norm based sparse regularization is realized in a
Bayesian setting where a sparse prior based on a general-
ized normal distribution is used. To obtain a closed form
for the posterior distribution, we derive a variational lower
bound of the generalized normal distribution and solve for
the posterior distribution using this lower bound by the Ex-
pectation Maximization (EM) method.

Simulation experiments were conducted for the detec-
tion of transmural and endocardial infarcts of various loca-
tions, where we evaluated and compared the presented L0-
norm based regularization (L0R) with L1-norm based reg-
ularization (L1R) and total-variation minimization (TVM).
Experiment results show that the presented algorithm,
L0R, outperforms L1R and TVM in identifying both trans-
mural and endocardial infarcts, but while the improvement
of accuracy is significantly higher in endocardial cases.

2. Methods

Transmural action potential is used as the cardiac source
model (unknown variable) in this study. The relation be-
tween the ECG data and the transmural action potential
can be described by a quasi-static approximation of the
Maxwell’s equations for an electromagnetic field [5, 6].
Solving these equations numerically on subject specific
heart-torso models, a linear forward model can be obtained
as

yk = Huk (1)
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where H is called the forward matrix and yk and uk denote
a vector of ECG measurements and potential inside heart
respectively at any time instant k. The inverse problem
involves estimation of uk given measurements yk for all
time k. In this paper, we solve this separately for individual
times instant k. For clarity, the subscript k is dropped from
the formulations in the remainder of the paper.

2.1. Bayesian formulation of the inverse
ECG problem

In a Bayesian formulation, we are interested in obtain-
ing the posterior distribution of the action potential given
the ECG data which, according to the Baye’s theorem, is
formulated as:

p(u|y) = p(y|u)p(u)
p(y)

(2)

In (2), the likelihood function is assumed to be a Gaus-
sian distribution that incorporates the forward model as:

p(y|u, β) = N (y|Hu, β−1I) (3)

where β−1 is the variance of an additive Gaussian noise.
We let the precision (inverse variance) β to be an unknown
parameter following a Gamma distribution.

As explained earlier, the prior distribution of u is de-
signed to impose sparsity in its gradient domain. Let us
define a vector x = Du, to denote the gradient of action
potential with matrix D being the gradient operator on the
3D cardiac mesh. To mimic the L0-norm constraint on x
without having to solve NP hard problem, we propose a
generalized Gaussian distribution for each component of
x. Let x = (x1, x2, ...xN ) be a vector with independent
components each following a generalized normal distribu-
tion with the same parameters α, p. We have,

p(x|α) =
∏
i
C
α exp(−|xi|p

αp ) (4)

where p ∼ 0 approximates a L0 norm constraint in a prob-
abilistic setting.

2.2. Variational approximation

Using a prior distribution as defined in eq.(4), the pos-
terior distribution of u as defined in (2) is analytically in-
tractable. Hence, we propose a variational approximation
of the original prior distribution.

Theorem 1
If the pdf of a random vector x is given by eq.(4), then,

p(x|α) ≥ CN

αN exp(− xT Ax
2 ) exp

(
− 2−p

2 (α
2

p )
p

p−2
∑
i λ

p
p−2

i

)
(5)

The proof of Theorem 1 makes use of the Legendre trans-
form and convex analysis, but has been omitted due to page
constraints. Theorem 1 provides a lower bound for p(x|α),
which is then used as the prior distribution of x. By replac-
ing x = Du in the right hand side of eq. (5), the prior of u
is given by

p(u|λ, α) = CN

αN exp(− uT DT ADu
2 ) exp

(
− 2−p

2 (α
2

p )
p

p−2
∑
i λ
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)
(6)

2.3. Inference

We note that both the prior and likelihood distributions
have parameters α, β,λ for which we do not have reliable
knowledge. To estimate the posterior distribution over u,
therefore, we need to estimate these unknown parameters.
This is done by the Expectation Maximization (EM) pro-
cedure [7] that consists of the following iterations:

a. E-step: In this step, values of parameters are used
from the previous step. If we denote previous parame-
ter values as αold, βold,αold, then we calculate the pos-
terior distribution with those fixed parameters q(u) =
p(u|y, αold, βold,λold). This gives us a function L as:

L(α, β,λ) = Eq(u)[log (p(u,y|α,λ, β)) + log(β)] (7)

where Eq(u)[ ] denotes the expectation with respect to dis-
tribution q(u).

b. M-step: This step consists of the following maxi-
mization

αnew, βnew,λnew = argmax
α,β,λ

L(α, β,λ) (8)

These two steps are repeated until convergence. At conver-
gence, we obtain both the estimate of parameters α̂, β̂, λ̂
and the posterior distribution p(u|y, α̂, β̂, α̂).

From the mean of the estimated posterior distribution
of u, regions with the value of action potential below a
threshold are identified as infarcts.

3. Experiments and Results

Experiments were performed on MRI derived heart-
torso model with infarcts set according to the AHA 17
segment model on the left ventricle. ECG signals were
simulated form the forward model and corrupted with 20
dB Gaussian noise for inverse reconstruction. On transmu-
ral and endocardial infarcts, we compared the performance
of the presented L0 norm based regularization (L0R) with
existing L1 norm based regularization (L1R) and total vari-
ation minimization (TVM) methods. Metrics used to com-
pare performance are defined as follows:
1) True Positive (Hit): If the reconstruction from the algo-
rithm contains (fully or partially) the actual region of the
infarct, it is considered a hit. Out of all tested cases, num-
ber of hits is calculated for each method.
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Figure 1. Reconstruction of transmural infarcts using total
variation, L0 norm and L1 norm based sparse regulariza-
tion in gradient domain.

2) False positive patch per hit (FP): If the reconstruction
contains false positive patches in addition to the actual re-
gion of infarct, the number of false positive patches per hit
is calculated. For example, in Fig. 2, Seg-12, the recon-
struction by using L1R contains actual infarct region but
has two more false positive patches.
3) Dice coefficient (DC)= 2(T ∩ R)/(T ∪ R), where T
and R denote, respectively, true and reconstructed regions
of infarct.

Fig.1 compares the reconstruction of transmural infarcts
by the proposed L0R with that by L1R and TVM in three
segments: Segment 1, 12 and 17. It should be noted that

Figure 2. Reconstruction of infarcts that lie entirely on the
endocardium using total variation, L0 norm and L1 norm
based sparse regularization.

all three methods performed well although the reconstruc-
tion by L0 norm seems slightly closer to the ground truth.
Similar a conclusion can be drawn from the hit rate in the
top half of Table 1. Interestingly, TVM appeared to suf-
fer from a higher presence of false positives, as evidenced
by the significantly higher number of false positives (dou-
bling those of the other two methods) and the significantly
reduced dice coefficient (nearly half of those of the other
two methods).

Fig.2 shows some examples comparing the three algo-
rithms when the infarct lies entirely on the endocardium.
In all three segments, L0R reconstructed scar at a location
consistent with the ground truth and without false posi-
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Table 1. Performance of three sparse algorithms for infarct
detection (Hit= True Positive, FP= False positive patches
per hit, DC= Dice coefficient)

Cases\Methods TVM L1R L0R

Transmural
infarct

Hit 15/17
(88.2%)

15/17
(88.2%)

16/17
(94.1%)

FP 0.6 0.33 0.31
DC 0.39 0.8 0.95

Endocardial
infarct

Hit 6/17
(35.3%)

6/17
(35.3%)

11/17
(64.7%)

FP 2.67 2.33 0.45
DC 0.158 0.17 0.29

tives. When infarct was in segment 2, both TVM and L1R
did detect the infarct at the correct location, but with a lot
of false positives. When infarct was in segment 13, L1R
failed completely while TVM reconstructed the infarct but
with false positives. In Segment 15, neither TVM nor L1R
could detect the infarct at the correct location. Similar ob-
servations can be made on the bottom half of Table 1. The
hit rate and dice coefficient of L0R is almost twice and
false positives are five times smaller compared to the other
two algorithms when the infarct is completely endocardial.
Unlike in transmural case, both L1R and TVM showed
very limited accuracy in detecting endocardial infarcts.

In summary, for both transmural and endocardial cases,
the presented L0R norm shows improved accuracy than
TVM and L1R. This improvement is significant for non-
transmural endocardial infarcts. It is noteworthy that six
out of 17 segments could not be reconstructed by any of
the three methods. These segments were in the septum and
the lateral side of the left ventricle. We speculate that this
might be because the contribution to the ECG is small from
sources at these locations of the heart. Since sparse algo-
rithms work by pruning out the less important sources, it
might be possible that these sources were pruned out even
though the actual sources lie in those locations. However,
thorough analysis is needed to reach any conclusion.

4. Conclusions

This paper developed a Bayesian approach using an ap-
proximation of a L0 norm based prior distribution and
compared its performance to two prevalent sparse meth-
ods in detecting transmural and non-transmural endocar-
dial infarcts. Experiments showed that the performance
of L0 norm based regularization outperformed the other
two sparse regularization techniques in detecting both the
transmural and endocardial infarcts, although the improve-
ment in performance is much more significant in the en-
docardial case where the other two algorithms performed
poorly. Future works will examine this observation in a
larger number of experiments, especially using real data.

Regarding locations at which none of the sparse algo-
rithms under study succeeded at reconstruction, we an-
ticipate that better approximation of L0 norm and con-
sequently better sparse regularization might be possible.
However, this observation also raises the question if sparse
methods alone are sufficient for inverse ECG because L0
is the sparsest one could possibly go. Lastly, our results
showed that the effectiveness of a sparse algorithm de-
pends on both the location and transmurality of the infarct,
both of which are reflected in the behavior of forward ma-
trix. Therefore, it would be worthwhile to understand the
precise connection (preferably a rigorous mathematical re-
lation) between the success of the reconstruction and the
location as well as the transmurality of the infarct so as
to understand algorithms along with the conditions under
which they perform well.
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