
Robust Automatic Detection of P Wave and T Wave in Electrocardiogram

Dimitrios Zavantis, Ermioni Mastora, George Manis

Department of Computer Science and Engineering, University of Ioannina, Greece

Abstract

The Electrocardiogram (ECG) is a significant tool to in-
vestigate the electrical activity of the heart. Even though P
and T waves reveal very useful information, their accurate
detection is a difficult and challenging task on account of
noise, baseline drift and odd morphologies.

The need for a rapid and effective detection algorithm
motivated us to propose two automated methods: the per-
centile based Automatic Detection (pAD) and the Graphi-
cal based Automatic Detection (gAD). Both algorithms use
statistical and probabilistic concepts to achieve adequate
delineation and detection of the waves. The former uses
the percentile as an adaptive threshold to define the lo-
cation of these waves. The latter uses a “feature wave-
bank” to train a graphical probabilistic model named as
Hidden Conditional Random Field (HCRF). The gAD al-
gorithm takes advantage of the monotonicity and the slope
of an ECG to detect and collect waves, which imports to
the graphical model and classifies them to P or T waves.

The efficiency of our proposed algorithms has been eval-
uated on 10 long-term (24-hour) ECG recordings of MIT-
BIH Normal Sinus Rhythm Database. The training set we
used for gAD was very small, only the 0.2% of the total
number of the available waves. The results show a signifi-
cant and promising detection accuracy rate.

1. Introduction

The Electrocardiogram represents a non-invasive method
which provides crucial information about the functionality
and performance of human heart and the influencing fac-
tors. The ECG waveform is well characterized by its cyclic
behavior of sequential occurrence of P (atrial depolariza-
tion), QRS (ventricular depolarization), and T (ventricular
repolarization) waves. Obviously, each wave represents a
specific physiological performance of the heart system. As
a result, a cumulative analysis of ECG wave components
is significant in diagnosis and prognosis of abnormalities
(morphological pattern changes) or disorder of heart rate
and requires the detection of these waves.

In literature, there is a growing number of researches on
automatic analysis of ECG signal and delineation of P and

T waves. The detection task is challenging due to ampli-
tude and morphology variability, low signal-to-noise ratio
(SNR), low amplitudes, and possible overlapping of the
P wave and T wave with the QRS complex. There have
been different approaches on detection of P and T waves.
Murthy and Prasad [1] have used the discrete cosine trans-
form (DCT) for delineation of P waves, whereas Murthy &
Niranjan [2] the discrete Fourier transform (DFT). Thakor
and Zhu [3] used their own adaptive filter focusing on P
waves. Trahanias and Skordalakis [4] applied a syntac-
tic approach to ECG pattern recognition and parameter
measurement for the detection of P, QRS and T waves.
Martı́nez et al. used an application of the phasor trans-
form for automatic delineation of single-lead ECG fiducial
points. Laguna et al. [5] and Chatterjee et al. [6] illus-
trate techniques for automatic detection of wave bound-
aries based on slope estimation. Madeiro et al. [7] pro-
posed a mathematical modeling of P and T wave. There
are instances of studies in literature for P and T waves de-
tection, which have used multi-resolution wavelet analysis
[8–14], ensemble averaging [15], sparse derivatives [16],
nonlinear transform [17] and correlation analysis [18].

However, building a reliable and powerful method for
automatic ECG delineation is still far from being solved
and remains a topic of main interest.

2. Data and Methods
2.1. Data

The efficiency of our proposed algorithms has been eval-
uated on 10 long-term (24-hour) ECG recordings of MIT-
BIH Normal Sinus Rhythm Database. The subjects had no
significant arrhythmia with age range from 20 to 50. The
database is sampled at 128 Hz and the data is available at
uniform intervals of 7.8125 msec [19].

2.2. Preprocessing

Initially, the signals are preprocessed to eliminate the
undesirable frequencies (parasitic, noises). To achieve
that, a moving average filter was implemented to smooth
data by replacing each data point with the average of the
N neighboring data points. This process is equivalent to
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lowpass filtering and is given by the following equation:

ys(i) =
1

2N + 1
(y(i+N)+y(i+N−1)+ ..+y(i−N)),

where ys(i) is the smoothed value for the ith data point
and N is the number of neighboring data points (in our
case N = 5).

The signal has been divided into segments to reduce
baseline drift. The detection of P and T waves, with re-
spect to R peak, would be easier if R peaks were preserved
unaffected by the filter. Hence, the location and the value
of R were used from the original signal and not from the
filtered one.

2.3. Percentile Automatic Detection

The percentile based Automatic Detection (pAD) con-
sists of three basic steps. The first step is the location of
the waves. The peak of each wave has been detected us-
ing as threshold the percentile. The kth percentile of the
signal is the value below which k percent of the obser-
vations may be found. It has been noticed that the in-
tervals IT = [90th percentile ± 0.3 mV ] and IP =
[65th percentile ± 0.2 mV ] contain a set of values and
among them the corresponding peaks of T and P wave.
Figure 1 illustrates the percentile area for the selection.

Figure 1. The percentile based Automatic Detection

The second step aims to isolate the peaks by using the
set S, which is defined as follows:

S = {x : f(x) ∈ IT (or IP )},

where f(x) are ECG values and x their locations. The
set S has to be divided into subsets Si, where each con-
tains consecutive elements. Next, the maximum values for
subsets, M = {maxSi} were found which are acceptable
only if they were not the first or the last element of Si, to
avoid selecting points of the QRS complex. For each R, the
peak of M which is 35*7.8125 msec after R or 25*7.8125
msec before R was kept. Finally, the set M ′ = {maxSi}
consists of the location of the peaks.

For each peak we move to the right until the gradient
stops to be negative and we consider this point the end of
the wave. The start is the point on the left part of the wave
having the closest ordinate with the ending point.

This approach has the opportunity to select the waves
that are within the area defined by percentile values with
excellent results for both P and T waves. However, in most
cases an ECG signal has a shifted baseline across the time
(change in mV). Hence, the next method has been created
to achieve better results defying those shifts among other
things that will be discussed below.

2.4. Graphical based Automatic Detection

The morphology of the waves provides a lot of informa-
tion and can be used to classify the waves to their corre-
sponding group based on their differences. As a result, a
training set of feature vectors of P and T waves has been
created using an adequate number of waves, collected by
the pAD method. The feature vector represents four esti-
mated morphological features: area, height, left slope and
right slope.

Figure 2. The HCRF graphical model

Given a training set (x1, y1), (x2, y2), ..., (xm, ym),
where xi denotes the feature vector described above and
yi is the class label for every wave (P or T), the Hidden
Conditional Random Field (HCRF) model [20] has been
employed for the classification (Figure 2). The classifi-
cation task aims to map each observation sequence to its
actual label. An HCRF models the conditional probability
of a class label given an observation sequence as follows:

P (y, h|x, θ) =
exp Ψ(y, h, x; θ)∑

y′∈Y
∑

h exp Ψ(y′, h, x; θ)
, (1)

where h = {h1, h2, ..., hm} are the hidden states. Hid-
den states are not observable during the training phase
and are assigned to each observation in order to capture
certain underlying structure of each class. Moreover, the
HCRF algorithm requires the number of hidden states to
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be assigned in advance by the user. The potential func-
tion Ψ(y, h, x; θ), which is parametrized by θ, measures
the compatibility between a label, a configuration of the
hidden states and an observations.

Training and Inference: Given a new test wave x, and
parameter values θ? induced from training set, the inferred
label for the new wave will be:

y? = arg maxP (y|x; θ?). (2)

The objective function used in training phase is defined
below:

L(θ) = logP (y|x; θ)− 1

2σ2
‖θ‖2, (3)

as the difference of conditional log-likelihood term and a
penalty term. The penalty term assumes the model pa-
rameter follows a normal distribution P (θ) ∼ N(0, σ2)
to constrain the ‖θ‖. The optimal θ? which maximizes the
L can not be computed analytically; instead we have em-
ployed LBFGS, an iterative method to estimate it.

Classification: The waves, which will be used for the
test phase have been selected in three stages. The first
stage (Figure 3) is the determination of the start-to-peak
of the waves. In this stage we include values of ECG with
positive first derivative and denote these values as the first
half of the wave (onset to peak).

Figure 3. Detection of onset-to-peak of the waves

In the second stage (Figure 4) we eliminate values of
QRS complex and noise, which have been selected in the
earlier stage. The left fitting slope has been calculated and
used as a constrain for the elimination. The range of the
slope will be specified. Its minimum value has been de-
fined as the minimum of left fitting slope for both P and
T waves for all patients, whereas the maximum threshold
value as the maximum left fitting slope.

Finally, to detect the other half wave (Figure 5), an ad-
dendum of half of the length of current wave has been
implemented to locate the maximum value (the peak).
Having fixed the peak, values of ECG with negative first

Figure 4. Remove of QRS and noise

derivative on the right side of the peak have been denoted
as the second half of the wave (peak to offset).

Figure 5. Detection of peak-to-offset of the waves

3. Results

The total number of selected waves for both methods
are shown in Table 1. Each line is for a different subject,
while the last line shows the average classification accu-
racy. For the gAD algorithm, a cross-validation process
has been implemented to find the optimal number of hid-
den states for HCRF, which is four in our case. As we may
notice all P or T wave values from the pAD algorithm are
less than those from the gAD algorithm respectively. The
intuition of these percentages (e.g. in 97%) is to declare
that among 100K R peaks the 97K waves have been de-
tected correctly. The other 3K may not be even present or
can not be detected due to variability and odd morphology.
A check for false records is implemented in every subject
respectively using as criterion the R peak annotation. As a
consequense, the results of this table show only the correct
waves from both algorithms.

4. Conclusion

In this paper we present two automatic methods for the
detection of P and T waves. The pAD is applied to the ECG
wave using as threshold the percentile concept. The set of
values in that interval include the area where the peaks and
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Table 1. Accuracy rate of detected waves

pAD gAD
P wave T wave P wave T wave
40.75% 45.73% 77.22% 88.72%
34.47% 31.19% 69.66% 78.35%
55.87% 57.01% 97.10% 95.33%
23.18% 51.22% 63.75% 61.66%
50.60% 60.55% 94.74% 99.00%
20.91% 47.16% 66.25% 65.45%
22.94% 26.53% 67.45% 69.31%
25.58% 36.93% 68.32% 76.33%
24.06% 60.74% 76.29% 77.97%
19.31% 41.69% 77.21% 86.13%
31.76% 45.87% 75.79% 79.82%

consequently the waves may be available. Due to noise,
baseline drift or odd morphologies the gAD method is pro-
posed in which a small amount of waves has been been
selected as the training set. Utilizing the HCRF as a classi-
fication method, the detection has achieved high accuracy
rate and a sufficient number of waves which can be used
for further analysis.
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