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Abstract 

Epilepsy affects the autonomic nervous system, and 
changes in this function are known to occur during, and 
even before the electroencephalographic onset of the 
seizure. The aim of this study was to characterize 
autonomic changes during and before the epileptic 
seizures. 

The electrocardiographic signals from thirteen 
epileptic patients, were first pre-processed and then the RR 
series was extracted. The following segments were selected 
for the analysis: 15 min before seizure onset (preictal), 
seizure time frame (ictal) and 15 min far from the seizure 
(interictal). Temporal and frequency features were 
calculated. In addition, Recurrence Quantification 
Analysis (RQA) was performed.  

Significant differences were detected in time-domain 
and RQA parameters 15 min before seizures suggesting the 
possibility of an early prediction of seizure onset. In 
addition, significant changes were observed during 
seizure. Further studies are needed to confirm these 
preliminary results in a larger number of subjects. 

 
 

1. Introduction 

Epilepsy is a neurological disorder  [1], characterized by 
the recurrence of epileptic seizures, which constitutes a 
nosographic entity with considerable social impact, both 
because of its high incidence and of its chronicity. The 
prevalence of the disorder is estimated at around 1% of the 
population. Of these subjects, 25% do not respond to 
available therapies [2]. An early prediction of epileptic 
seizures would considerably increase the quality of life of 
these patients. 

Epileptic seizures can affect autonomic nervous system 
(ANS) determining changes in both the sympathetic and 
parasympathetic functions. A recent meta-analysis has 
been published reporting autonomic changes in epilepsy 
[3]. Tachycardia and bradycardia are well-known 
autonomic phenomena associated with epileptic seizures, 
and such cardiac changes occur not only at the same time 
as but also prior to the electroencephalographic (EEG) 
seizure onset [4, 5]. 

 The activation of central ANS by epileptic discharge 
propagation during a seizure is thought to be responsible 

for the preictal cardiac autonomic symptoms [6]. Few 
studies have been published characterizing ANS changes 
during preictal phases with contradictory results [7-9]. 

The aim of this study was to characterize ANS changes 
during the seizures and in particular prior to the onset of 
the seizures, i.e., during the preictal phase. In addition to 
time and frequency domain parameters, Recurrence 
Quantification Analysis (RQA) was also applied, for the 
first time, to characterize ANS during epilepsy.  The long-
term goal of the study is to develop an algorithm able to 
predict epileptic seizures with high sensitivity and 
specificity.  
 
2. Methods 

2.1. Data 

Seizures were selected retrospectively from patients 
recruited at Unit of Neurology and Neurophysiology, 
Department of Neurological and Neurosensorial Sciences, 
University of Siena, Italy. All the patients were long-term 
monitored with 10-20 EEG and ECG. The onset of seizures 
was annotated based on EEG and video. ECG was 
measured simultaneously with a sampling rate of 512 Hz.  

A total number of 31 seizures were collected from 13 
patients affected by various kinds of epilepsy. 
 
2.2.  Pre-processing 

ECG signals were first analysed for impulsive artefacts 
removal, power-line interference cancelling (50Hz), 
baseline wandering removal, signal-to-noise ratio 
improvement [10]. The signal was then interpolated to 
1024 KHz and the QRS complexes were detected to 
reconstruct the RR series. Afterwards, an algorithm was 
applied for the recognition and correction of non-
sinusoidal beats in order to have a RR series that only 
contains variations due to the sinus node and thus reflects 
the activity of the ANS.  

 
2.2.  Feature extraction 

For each seizure, three ECG segments were selected: 
• interictal 15 min epoch apart from at least 50 

minutes from seizure onset; 
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• preictal 15 min epoch ending 30 s before the seizure 
onset;  

• ictal epoch during seizure.  
For each segment, features were extracted within 1-min 

non-overlapping windows. To reduce inter-individual 
variability, the RR was normalized with zero mean and a 
standard deviation of one before computing the features.  
 
2.3. Time-domain features 

The time-domain features were the mean of RR 
intervals (MeanNN); the number of pairs of adjacent RRI 
whose difference is more than 50 ms (NN50); the standard 
deviation of projection of the Poincaré plot on the line 
perpendicular to the line of identity that is a measure of 
short-term variability (SD1); the standard deviation of the 
projection of the Poincaré plot on the line of identity that 
is a measure of long-term variability (SD2); the Cardiac 
Sympathetic Index (CSI=SD2/SD1).  
 
2.4. Frequency-domain features 

To compute frequency-domain features, the 
Generalized Short Time Fourier Transform (GSTFT) [11] 
was calculated. From the GSTFT we extracted the power 
of the low frequency band (0.04 Hz - 0.15 Hz) normalized 
to the total power (LFn), the power of the high frequency 
band (0.15 Hz - 0.40 Hz) normalized to the total power 
(HFn) and the ratio of LF to HF (LF/HF), which is related 
to the sympathetic-parasympathetic balance of the ANS. 
 
2.5. Recurrence quantification analysis 

RQA [12] quantifies the density of recurrence points as 
well as the histograms of the lengths of the diagonal and 
vertical lines in a recurrence plot. Parameters extracted 
were the Recurrence Rate (RR), Determinism (DET), 
Laminarity (LAM), Entropy (ENT), the maximum length 
of the diagonal (Lmax) and the Trapping Time (TT). 

 
2.6. Statistical analysis 

Statistical analyses were performed using IBM SPSS 20 
for Mac (IBM, Armonk, NY, USA). The Shapiro-Wilk test 
was applied to test normality of variables. As the data were 
asymmetrically distributed, the Friedman test for repeated 
measures was used to compare features in preictal, ictal 
and interictal segments. If it showed a significant effect, 
then a paired Wilcoxon test for post-hoc analyses was 
applied. Values are given as median(IQR) and a p<0.05 
was considered as statistically significant.  
 
 
 
 

3. Results 

3.1. Time-domain analysis 

 Table 1 reports time-domain features in interictal, 
preictal and ictal segments with significance. In particular, 
we observed that NN50 was significantly different in the 
three different epochs as shown in Figure 1. 
 

Table 1. Time-domain features in interictal, preictal and 
ictal segments. 

 
Feature Value 

 
Friedman 
Test 
(p-value) 

Wilcoxon 
Test§ 
(p-value) 

MeanNN   0.51  
Interictal 0.75(0.09-3.16)   
Preictal 0.22(-0.55-4.73)   
Ictal  8.98(-1.96-17.87)   
NN50  0.019*  
Interictal 43.22(17.82-47.51)   
Preictal 32.01(14.79-48.08)  0.03* 
Ictal 19.26(14.91-38.56)  0.005** 
SD1  0.02*  
Interictal 0.17(0.09-0.25)   
Preictal 0.16(0.07-0.27)  0.91 
Ictal 0.94(0.18-15.56)  0.001** 
SD2  <0.001**  
Interictal 0.52(0.37-1.21)   
Preictal 0.51(0.32-0.77)  0.87 
Ictal 2.00(0.92-15.56)  <0.001** 
CSI  <0.001**  
Interictal 3.59(2.83-4.06)   
Preictal 3.22(2.84-5.13)  0.48 
Ictal 8.52(6.44-15.56)  <0.001** 
§ Comparisons to interictal, reported only when the 
Friedman test was significant. *p<0.05, **p<0.01 
 

 
Figure 1. NN50 in the different epochs. *p<0.05, **p<0.01 

p=0.03
p=0.001
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3.2. Frequency-domain analysis 

Table 2 reports frequency-domain features in the 
different phases with significance. LF/HF was 
significantly increased during ictal compared to interictal. 

 
Table 2. Frequency-domain features in interictal, 

preictal and ictal segments. 
 

Feature Value 
 

Friedman 
Test 
(p-value) 

Wilcoxon 
Test§ 
(p-value) 

LFn   0.96  
Interictal 0.22(0.18-0.27)   
Preictal 0.23(0.18-0.28)   
Ictal 0.17(0.11-15.56)   
HFn  0.40  
Interictal 0.17(0.12-0.27)   
Preictal 0.13(0.08-0.25)    
Ictal 0.17(0.05-15.56)   
LF/HF  0.03*  
Interictal 2.19(1.53-4.04)   
Preictal 2.84(1.62-4.57)  0.12 
Ictal 4.37(2.84-15.56)  0.007** 

§ Comparisons to interictal, reported only when the 
Friedman test was significant. *p<0.05, **p<0.01 

 
3.3. Recurrence quantification analysis 

Results of the RQA analysis with significance are 
reported in Table 3. 

 
Table 3. RQA parameters in interictal, preictal and ictal 

segments. 
 

Feature Value 
 

Friedman 
Test 
(p-value) 

Wilcoxon 
Test§ 
(p-value) 

RR  0.96  
Interictal 13.05(7.62-31.23)   
Preictal 15.75(7.86-65.24)   
Ictal 18.63(10.88-28.89)   
DET  0.43  
Interictal 57.58(17.82-77.66)   
Preictal 63.83(14.79-86.91)    
Ictal 19.25(13.62-63.27)   
LAM  0.30  
Interictal 18.87(8.98-44.23)   
Preictal 16.49 (7.17-70.09)   
Ictal 19.25(13.26-49.60)   
ENT  0.001**  
Interictal 2.36(1.38-3.23)   

Preictal 2.91(1.49-3.57)  0.09 
Ictal 4.31(2.10-15.56)  0.001** 
Lmax  0.34  
Interictal 12.29(6.73-23.90)   
Preictal 13.15(8.33-33.06)   
Ictal 17.86(12.16-21.87)   
TT  0.001**  
Interictal 3.59(2.31-5.25)   
Preictal 5.51(2.69-8.29)  0.03* 
Ictal 8.48(4.87-15.56)  0.001** 

§ Comparisons to interictal, reported only when the 
Friedman test was significant. *p<0.05, **p<0.01 
 
Figure 2 and 3 show differences in ENT and TT 
respectively in the three different phases.  
 

 
Figure 2. ENT in the different epochs. *p<0.05, **p<0.01 

 

 
Figure 3. TT in the different epochs. *p<0.05, **p<0.01 
 
4. Discussion 

The most significant result of our study was the 
significant changes in preictal phase compared to the 
interictal phase, suggesting that it is possible to predict 
seizures.  

In particular, we observed a decrease in NN50, 
suggesting a deterioration of HRV, which could be an 

p=0.09

p=0.001

p=0.001

p=0.03
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indication of increased cardiovascular risk, including 
mortality [13]. Significantly decreased in NN50 was 
previously reported during epilepsy [14]. In addition, it 
was recently observed, using a KNN classifier, that NN50 
and pNN50 were the most relevant features for predicting 
epileptic seizures [15]. We also observed differences in 
RQA parameters in preictal phase that was for the first time 
applied for the characterization of ANS during seizures. In 
particular, an increase in ENT and TT in preictal compared 
to interictal phase was observed, although for ENT in 
preictal there was a marginally significance. The increase 
in ENT means greater complexity of the recurrence plots 
during seizures. The increase in TT means that the time 
that the system abides at a specific state during seizures is 
longer than interictal phase. This change, previously 
observed applying RQA analysis to EEG signals in 
epilepsy [16], could reflect the synchronization of neurons 
during seizures.  

Other findings of this study are specific to ictal phase. 
In particular, we observed an increase in SD1, SD2, CSI 
and LF/HF. Overall these results suggest a predominance 
of sympathetic activity during seizure. Our finding 
confirms previous studies, which reported significant 
increase in several indices of sympathetic function before 
and during seizures [8], [14, 17]. These results indicate a 
sudden and excessive sympathetic shift in the 
sympathovagal balance of ANS before the seizure-onset. 

Overall the findings of this study suggest significant 
changes in ANS at least 15 min before seizures. Notably, 
the preictal phase selected in our study terminated 30 s 
before seizure, a sufficient time before the seizure onset to 
give an alarm to the subject. Thus, the results of this study 
could help in the prediction of the seizures to prevent 
adverse effects and in the automatic detection of seizures. 
Further studies are needed to confirm these preliminary 
results in a larger number of subjects. In addition, in a 
larger sample, seizures could be differentiated according to 
their localization to for a better characterization. 
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