




lation Y(s) = M(s)X(s), where M(s) = US/
√
(Ns) is

the PCA mixing matrix. Since the heart can be represented
as an electric dipole [13] and most of the body surface po-
tential energy can be adequately described by the first 3
PCs [14], we retained a 3D subspace M

(s)
3 as spanned by

the first 3 highest-variance columns of M(s).

2.6. BSPM complexity feature extraction

In order to test the ability of PCA components to be re-
trieved along the BSPM, each signal Y(s+1) in the (s+1)-
th segment was projected onto the subspace determined in
the preceding frame (s):

Ŷ(s+1) = M
(s)
3 (M

(s)
3 )#Y(s+1) (2)

where (·)# is the Moore-Penrose pseudoinverse operator.
The instantaneous multilead error εεε between the input sig-
nal y(s+1) and its PCA approximation ŷ(s+1) was com-
puted. From a geometric point of view, these two terms
can be regarded as vectors (with as many components as
the number of BSPM leads examined), whose degree of
similarity can be evaluated in terms of magnitude and di-
rection. To this end, we computed the normalized ampli-
tude norm of the PCA reconstruction error as:

dεεε =
‖ŷ(s+1)(t)− y(s+1)(t)‖

‖y(s+1)(t)‖
. (3)

Amplitude normalization was performed to avoid bias due
to different signal voltage scales, so that dεεε values will de-
pend on PCA approximation accuracy only. Cosine simi-
larity between the two vectors was also computed as:

cos(αεεε) =
〈ŷ(s+1)(t),y(s+1)(t)〉
‖ŷ(s+1)(t)‖‖y(s+1)(t)‖

, (4)

so that values close to 1 will depict more similar and cor-
related signal patterns. Finally, the nondipolar component
index (NDI) was determined as a function of energy re-
tained by the PCA eigenvalues σ`, ` = 4, . . . , L outside
the projection subspace described by M

(s)
3 columns.

NDI = 1−
∑3
`=1 σ`∑L
`=1 σ`

(5)

Lower NDI values indicate that BSPM content can be well
described by the subspace selected, whereas higher values
point out the need for a higher number of PCs to obtain suf-
ficient estimation accuracy. The parameter was computed
in Ns-s sliding windows at a fixed step q = 0.1 s.

2.7. Statistical analysis

Parameters’ distribution was checked using a Lilliefors
test. For normally distributed data, intergroup differences

were verified by an unpaired Student’s t-test. In the other
cases, a Wilcoxon’s rank sum test was applied. Signifi-
cance was taken for p-value ≤ 0.05. Temporal changes in
VF complexity were verified in clinical data by compar-
ing features averaged over 4-s windows at the beginning
(“Start-VF”) and at the end (“End-VF”) of the output pa-
rameter series. The same analysis was performed in SR
(“Start-SR” vs “End-SR”). The choice of this window size
is justified by the need to include at least 2-3 cardiac cycles
for pattern characterization during SR. PCA indices deter-
mined in ex-vivo data and averaged in Ns-s consecutive
frames during (“Perfused VF”) and after (“Non-perfused
VF”) heart perfusion were also examined. Finally, PCA
features from the “Right” in-silico BSPM leads were com-
pared to those obtained from the “Left”.

3. Results

An example of the output temporal series of each of the
proposed VF complexity markers is shown in Figure 3.
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Figure 3. Time series of the PCA features averaged in
consecutive 0.5-s frame for the BSPM example in Figure 1.

The distribution of PCA features was displayed through
Tukey’s box plots and significant comparisons marked
with (∗) in Figure 4. A significant increase in complex-
ity at the end of the VF episode was quantified by higher
NDI and dεεε and lower cos(αεεε) values (p < 0.0001, Fig-
ure 4A). By contrast, no significant changes occurred dur-
ing SR (p > 0.05). A similar trend was observed in the ex-
vivo data before and after stopping perfusion (p < 0.0001,
Figure 4B). Indeed, either the transition from VT to VF
or the degeneration of simple VF into more disorganized
forms yielded more variable and unpredictable signal pat-
terns. Finally, the same analysis was applied to the syn-
thetic BSPMs in each side of our torso model. The spatial
distribution of PCA parameters appears inhomogeneous,
and higher VF complexity was significantly quantified by
higher dεεε (p = 0.01) and NDI (p < 0.0001) and lower
cos(αεεε) (p = 0.007) values on the right side of the heart
(Figure 4C), where the VF source was mainly located.
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Figure 4. Box plot of the BSPM complexity markers: A.
From SR and VF clinical data. B. From ex-vivo data in
perfused and non-perfused VF. C. From in-silico BSPM
right and left leads.

4. Discussion and conclusions

Our study put forward a non-invasive methodology
to assess changes in spatiotemporal organization of VF
through suitable features determined by PCA of multi-
lead BSPMs. All the markers could significantly capture
and quantify the increase in VF episode complexity which
could be visually observed in clinical data. They were also
able to characterize the stability of BSPM signals during
normal SR, with a low false alarm rate. More disorganized
and chaotic patterns were also correctly depicted by our
indices in experimental data. Indeed, they effectively de-
tected not only sharp rhythm transitions (e.g., VT/VF), but
also alterations due to perfusion interruption, which was
responsible for the progressive cardiac tissue degeneration
and ischemia onset. VF pattern complexity characteriza-
tion was also effectively achieved on synthetic BSPMs,
with PCA-based parameters indicating higher complexity
in the right BSPM leads of our torso model. These results
were consistent with the membrane potential distribution
at the basis of the generation of a reentrant pattern in the
RV. Our findings demonstrate the ability of PCA to non-
invasively quantify changes in signal complexity during
VF. Future works include the validation of these markers
with intracardiac recordings. However, the choice of the
proper feature (e.g., entropy, dominant frequency, phase
mapping ...) is still an open issue. In-silico results may be
also corroborated by a comparison with epicardial poten-

tial phase mapping.
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