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Abstract

Introduction Ventricular fibrillation (VF) is the main
cause of sudden cardiac death, but we lack tools to predict
the evolution of its complexity. This study proposes novel
VF complexity markers obtained by principal component
analysis (PCA) of body surface potential maps (BSPMs).
Methods BSPMs were divided in 0.5-s segments, each pro-
jected on the 3D PCA subspace determined in the previ-
ous frame. Reconstruction error € was expressed in terms
of norm de and angle cosine cos(ce ), and the nondipolar
component index (NDI) quantified the energy of the first
3 PCA eigenvalues. These markers quantified changes in
complexity between the beginning and the end of 24 VF
episodes and 5 control sinus rhythm (SR) recordings. They
were also tested on 6 BSPMs from a torso-tank model dur-
ing and after ex-vivo pig heart perfusion. Differences be-
tween in-silico BSPM right and left leads were then ver-
ified in 4 human VF simulations, with a reentrant source
in the right ventricle. Results Higher NDI and de¢ and
lower cos(a.) denoted higher complexity at the end of VF
(p < 0.0001). No changes occurred in SR (p > 0.05).
The indices also underlined higher disorganization in ex-
vivo non-perfused VF (p < 0.0001). A similar trend was
observed in the right in-silico BSPM leads (p < 0.05).
Conclusions PCA can non-invasively quantify changes in
VF complexity.

1. Introduction

Ventricular fibrillation (VF) is the most serious heart
rhythm disturbance and the main cause of sudden cardiac
death [1]. However, there is still a lack of quantitative tools
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to evaluate the degree of myocardial electrical organization
during VF and predict its evolution. Most of the data used
to test hypotheses regarding VF mechanisms come from
animal models and computer simulations [2]. VF appears
to be triggered and maintained by high frequency reentrant
sources, with the spatiotemporal organization quantified
through optical mapping of the heart surface in terms of
phase locations and singularities [3]. To date, very few ex-
perimental studies on human VF have been reported [4],
and clinical applications of non-invasive cardiac electrical
mapping are still limited to a few centers [5]. VF onset
was predicted by some complexity measures in electrocar-
diograms (ECGs) from animal models [6] and humans [7],
but intra-episode organization was not evaluated. In [8],
atrial activity organization during atrial fibrillation (AF)
was assessed by principal component analysis (PCA) of
body surface potential maps (BSPMs). In [9], PCA fea-
tures from multilead ECGs proved to be predictive of AF
ablation outcome. In both studies, the distance between
the input signal and its reduced-rank PCA approximation
was used to measure AF organization. In this paper, we
move from this research to develop a novel PCA-based ap-
proach and evaluate changes in VF complexity in BSPMs.
Our method was applied to clinical BSPMs acquired dur-
ing VF and compared to recordings in normal sinus rhythm
(SR). Its ability to detect changes in VF organization was
also tested on torso potential recordings from a Langen-
dorff system. Finally, it was validated on in-silico body
surface signals generated by a VF human heart model.
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2. Methods
2.1. Clinical VF database

BSPMs from 24 patients (22 male, 50 + 22 years old)
were acquired with a 252-electrode vest (ECVUE, Car-
dioinsight Technologies, Cleveland, OH, USA) during
episodes of spontaneous or induced VF (duration 19.8 £+
6.5 s). An example is shown in Figure 1. VF was accom-
panied by structural heart diseases (SHD) in 7 patients (5
with ischemic VF, 2 with microvascular coronary dysfunc-
tion). VF was associated with Brugada and/or early repo-
larization syndrome in 12 non-SHD patients, and 5 were
diagnosed with idiopathic VF. Five BSPMs from 3 male
subjects (38 £ 13 years old) in normal sinus rhythm (SR)
were used as a control group.
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Figure 1. A BSPM recording (lead I) from a VF patient.

2.2. BSPMs from ex-vivo experiments

Ex-vivo data were collected from 6 Langendorff-
perfused pig hearts with standard Tyrode’s solution in a
human-shaped torso tank. A flexible 108-electrode sock
was placed over the epicardium and a pacing lead on the
right ventricle (RV) apex [10]. Tank and sock poten-
tials were acquired at 128 electrodes at 2 kHz (BioSemi,
the Netherlands), referenced to a Wilson’s central termi-
nal. Constant current stimuli were injected with shorten-
ing pulse durations starting at 1 ms to induce VF. In two
cases rapid pacing induced ventricular tachycardia (VT),
which later degenerated to VF, and in four cases there
was a straightforward transition from SR to VF (duration:
213 £ 143 s). Perfusion was stopped after 10 minutes (du-
ration: 537 4 414 s) to mimic conditions for realistic VF.

2.3. BSPMs from a human heart model

VF complexity markers were also tested on a bidomain
finite-difference torso model (1-mm resolution) combined
with a monodomain reaction-diffusion heart model (0.2-
mm resolution) [12]. We used an MRI-based patient-
specific 3D heart-torso model with anisotropic conduction
properties in the heart derived from rule-based fiber orien-
tation. Transmembrane currents were computed with a Ten

Tusscher-Panfilov 2006 (TP06) human ventricular tissue
model [11] to generate a 252-electrode BSPM (Figure 2,
right). VF-like excitation patterns were reproduced for 10 s
using the standard model tuning settings. Electrical insta-
bility was also simulated by increasing action potential du-
ration restitution slope and fast sodium current dynamics
recovery speed [11], thus generating reentrant waves and
spiral breakups, with the core located in the RV (Figure 2,
left), whereas LV was overall passive. Consequently, prop-
agation pattern complexity was separately assessed by our
method in each side of the heart after splitting the BSPM
leads in 2 distinct sets in 4 simulations.

Figure 2. Voltage membrane distribution (left) and body
surface potential (lead I, right) from a VF simulation.

2.4. BSPM data format and preprocessing

Prior to PCA, BSPMs were mean-centered and arranged
asan L x N matrix Y = [y(1)...y(N)] € REXN where
L is the number of leads, and N the number of samples.
We examined L = 252 leads in the in-silico and clinical
BSPMs, L = 128 leads in the ex-vivo BSPMs. In real data,
electrodes with excessive noise level were discarded after
visual inspection of the signals, thus in certain cases less
than L electrodes were retained. Furthermore, a wavelet
bandpass filter was applied to tank data in the frequency
band [3 — 150] Hz to remove noise due to baseline wander
and high frequency components.

2.5. PCA transformation of BSPM data

We investigated whether the degree of temporal repeti-
tiveness of PCA features could measure VF pattern com-
plexity. To this end, BSPMs were divided in Ny = 0.5-s
segments, and in each of them singular value decomposi-
tion of the input data Y (*) was applied as in [8,9]:

Y®) =usvT (1)

where U and V contain the left and right singular vectors
of Y(*), respectively, and the diagonal matrix S contains
the singular values oy, £ = 1, ..., L, each associated with
the principal components (PCs), which are mutually un-
correlated and linked with the observations through the re-
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lation Y(*) = M®)X(), where M(*) = US/\/(Ny) is
the PCA mixing matrix. Since the heart can be represented
as an electric dipole [13] and most of the body surface po-
tential energy can be adequately described by the first 3

PCs [14], we retained a 3D subspace M§S> as spanned by
the first 3 highest-variance columns of M (%),

2.6. BSPM complexity feature extraction

In order to test the ability of PCA components to be re-
trieved along the BSPM, each signal Y **1) in the (s +1)-
th segment was projected onto the subspace determined in
the preceding frame (s):

YO = M (M) Fy (D) @

where (-)# is the Moore-Penrose pseudoinverse operator.
The instantaneous multilead error € between the input sig-
nal y**1 and its PCA approximation §**1) was com-
puted. From a geometric point of view, these two terms
can be regarded as vectors (with as many components as
the number of BSPM leads examined), whose degree of
similarity can be evaluated in terms of magnitude and di-
rection. To this end, we computed the normalized ampli-
tude norm of the PCA reconstruction error as:

IF+1 (@) —yCD ()]
[y D @)

Amplitude normalization was performed to avoid bias due
to different signal voltage scales, so that d, values will de-
pend on PCA approximation accuracy only. Cosine simi-
larity between the two vectors was also computed as:

~(s+1 s+1
[FE+D @)y + @)l
so that values close to 1 will depict more similar and cor-
related signal patterns. Finally, the nondipolar component
index (NDI) was determined as a function of energy re-
tained by the PCA eigenvalues oy, { = 4,..., L outside

the projection subspace described by Mgs) columns.
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Lower NDI values indicate that BSPM content can be well
described by the subspace selected, whereas higher values
point out the need for a higher number of PCs to obtain suf-
ficient estimation accuracy. The parameter was computed
in Ng-s sliding windows at a fixed step ¢ = 0.1 s.

2.7.  Statistical analysis

Parameters’ distribution was checked using a Lilliefors
test. For normally distributed data, intergroup differences

were verified by an unpaired Student’s t-test. In the other
cases, a Wilcoxon’s rank sum test was applied. Signifi-
cance was taken for p-value < 0.05. Temporal changes in
VF complexity were verified in clinical data by compar-
ing features averaged over 4-s windows at the beginning
(“Start-VF”) and at the end (“End-VF”) of the output pa-
rameter series. The same analysis was performed in SR
(“Start-SR” vs “End-SR”). The choice of this window size
is justified by the need to include at least 2-3 cardiac cycles
for pattern characterization during SR. PCA indices deter-
mined in ex-vivo data and averaged in N,-s consecutive
frames during (“Perfused VF”) and after (“Non-perfused
VF”) heart perfusion were also examined. Finally, PCA
features from the “Right” in-silico BSPM leads were com-
pared to those obtained from the “Left”.

3. Results

An example of the output temporal series of each of the
proposed VF complexity markers is shown in Figure 3.
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Figure 3. Time series of the PCA features averaged in
consecutive 0.5-s frame for the BSPM example in Figure 1.

The distribution of PCA features was displayed through
Tukey’s box plots and significant comparisons marked
with (*) in Figure 4. A significant increase in complex-
ity at the end of the VF episode was quantified by higher
NDI and d, and lower cos(c.) values (p < 0.0001, Fig-
ure 4A). By contrast, no significant changes occurred dur-
ing SR (p > 0.05). A similar trend was observed in the ex-
vivo data before and after stopping perfusion (p < 0.0001,
Figure 4B). Indeed, either the transition from VT to VF
or the degeneration of simple VF into more disorganized
forms yielded more variable and unpredictable signal pat-
terns. Finally, the same analysis was applied to the syn-
thetic BSPMs in each side of our torso model. The spatial
distribution of PCA parameters appears inhomogeneous,
and higher VF complexity was significantly quantified by
higher de (p = 0.01) and NDI (p < 0.0001) and lower
cos(ae) (p = 0.007) values on the right side of the heart
(Figure 4C), where the VF source was mainly located.
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Figure 4. Box plot of the BSPM complexity markers: A.
From SR and VF clinical data. B. From ex-vivo data in
perfused and non-perfused VF. C. From in-silico BSPM
right and left leads.

4. Discussion and conclusions

Our study put forward a non-invasive methodology
to assess changes in spatiotemporal organization of VF
through suitable features determined by PCA of multi-
lead BSPMs. All the markers could significantly capture
and quantify the increase in VF episode complexity which
could be visually observed in clinical data. They were also
able to characterize the stability of BSPM signals during
normal SR, with a low false alarm rate. More disorganized
and chaotic patterns were also correctly depicted by our
indices in experimental data. Indeed, they effectively de-
tected not only sharp rhythm transitions (e.g., VI/VF), but
also alterations due to perfusion interruption, which was
responsible for the progressive cardiac tissue degeneration
and ischemia onset. VF pattern complexity characteriza-
tion was also effectively achieved on synthetic BSPMs,
with PCA-based parameters indicating higher complexity
in the right BSPM leads of our torso model. These results
were consistent with the membrane potential distribution
at the basis of the generation of a reentrant pattern in the
RV. Our findings demonstrate the ability of PCA to non-
invasively quantify changes in signal complexity during
VE. Future works include the validation of these markers
with intracardiac recordings. However, the choice of the
proper feature (e.g., entropy, dominant frequency, phase
mapping ...) is still an open issue. In-silico results may be
also corroborated by a comparison with epicardial poten-

tial phase mapping.
Acknowledgements

This work was supported by the National Research
Agency (ANR-10-IAHUO4-LIRYC) and the European Re-
search Council (SYMPHONY). It was granted access
to the HPC resources of IDRIS under the allocation
x2016037379 made by GENCIL

References

[1]  Priori SG, Blomstrom-Lundqvist C, Mazzanti A et al. 2015 ESC
Guidelines for the management of patients with ventricular ar-
rhythmias and the prevention of sudden cardiac death. Eur Heart
12016;32:2793-2867.

[2] Park SA and Gray RA. Optical mapping of ventricular fibrillation
dynamics. Adv Exp Med Biol 2015; 859:313-342.

[3] Umapathy K, Nair K, Masse S et al. Phase mapping of human fib-
rillation. Circ Arrhythm Electrophysiol 2010; 3:105-114.

[4] Nanthakumar K, Jalife J, Massé et al. Optical mapping of
Langendorff-perfused human hearts: establishing a model for the
study of ventricular fibrillation in humans. Am J Physiol Heart Circ
Physiol 2007; 293(1):H875-H880.

[S] Haissaguerre M, Hocini M, Nademanee K et al. Driver sources un-
derly the initial stage of ventricular fibrillation. N Engl ] Med 2017;
under review.

[6] Yua D, Smalla M, Harrisona RG et al. Measuring temporal com-
plexity of ventricular fibrillation. Phys Lett 2000; 265(1): 68-75.

[71 Zhang X, Zhu Y, Thakor N and Wang Z. Detecting ventricular
tachycardia and fibrillation by complexity measure. IEEE Trans
Biom Eng. 1999; 46(5):548-555.

[8] Bonizzi P, Guillem M de L, Climent A M et al. Noninvasive as-
sessment of the complexity and stationarity of the atrial wavefront
patterns during atrial fibrillation. IEEE Trans Biomed Eng. 2010;
57(9): 2147-2159.

[9] Meo M, Zarzoso V, Meste O et al. Catheter ablation outcome
prediction in persistent atrial fibrillation using weighted principal
component analysis. Biom Signal Process Control 2013. 8(6): 958-
968.

[10] Bear L, Huntjens P, Coronel R et al. Detection of Incomplete Left
Bundle Branch Block by Non-invasive Electrocardiographic Imag-
ing. In. Computing in Cardiology (CinC) 2016, 43: Vancouver,
Canada.

[11] Ten Tusscher KHWIJ and Panfilov AV. Alternans and spiral breakup
in a human ventricular tissue model. Am J Physiol Heart Circ Phys-
iol 2006. 291: H1088-H1100.

[12] Potse M, Dubé B, Richer J et al. A comparison of monodomain
and bidomain reaction-diffusion models for action potential propa-
gation in the human heart. IEEE Trans Biomed Eng. 2006. 53(12):
2425-2435.

[13] HoltJH, Barnard CL, Lynn MS and Svendsen P. A Study of the Hu-
man Heart as a Multiple Dipole Electrical Source I. Normal Adult
Male Subjects. Circ. 1969; 40: 687-696.

[14] Lux RL, Evans AK, Burgess MJ et al. Redundancy reduction for
improved display and analysis of body surface potential maps. I.
Spatial compression. Circ Res 1981;49:186-196.

Address for correspondence:

Marianna Meo
IHU LIRYC Av. Haut Levéque 33604 Pessac-Bordeaux, France
marianna.meo @ihu-liryc.fr

Page 4



	101-051



