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Abstract 

Capnography is often used for the guidance on 
ventilation rate during cardiopulmonary resuscitation 
(CPR). However, capnogram waveform frequently 
presents oscillations induced by chest compressions (CC), 
affecting the reliability of ventilation detection. The aim of 
the work was to evaluate the performance of an open-loop 
adaptive filter in the cancellation of CC oscillations in the 
capnogram during CPR. For that purpose, we analyzed 60 
episodes from an out-of-hospital (OOH) cardiac arrest 
registry maintained by TVF&R agency (USA). In 50% of 
the episodes the capnogram was corrupted by CC 
oscillations. The goodness of the filtering scheme was 
assessed by comparing the sensitivity (Se) and the positive 
predictive value (PPV) of an automated ventilation 
detector before and after filtering. A fixed-coefficient low-
pass filter was also designed for comparison. The results 
showed that both filters reported a good performance 
although the adaptive scheme presented a slightly higher 
PPV (+1.2 points globally). The simpler fixed-coefficient 
scheme avoids the reference signal, but requires validation 
with larger datasets to ensure stability.  

 
1. Introduction 

Current resuscitation guidelines recommend high 
quality chest compressions (CC) and ventilations during 
cardiopulmonary resuscitation, in order to increase 
survival from out-of-hospital (OOH) cardiac arrest [1]. 
However, the optimal application of the CPR procedure is 
not easy for both laypeople and well-trained rescuers [2]. 
Consequently, different indicators of CPR quality during 
the intervention are used for this purpose. 

Capnography is a non-invasive indicator of the 
concentration of carbon dioxide in the respiratory gases. 
Monitoring capnography during CPR is widely used for 
monitoring ventilation rate in order to prevent 
unintentional hyperventilation [3]. A clean capnogram is 
fundamental for a reliable visual analysis of the patient 

response (Fig. 1A). Unfortunately, different artefacts can 
frequently be observed in the capnogram during CPR. One 
of them is induced by CC, and appears superimposed on 
the capnogram as oscillations at the rate of the 
compressions and with varying amplitude (Fig. 1B,C). The 
CC artefact complicates the analysis of the capnogram, 
compromising the accurate detection of ventilations [4]. 

This work evaluates the performance of an open-loop 
adaptive filtering strategy for the cancellation of CC 
oscillations in the capnogram during CPR. For this 
purpose, we used a large dataset of OOH cardiac arrest 
episodes and selected those that were corrupted by CC 
oscillations. We designed an adaptive stop-band filter to 
supress the oscillations from the capnogram. We assessed 
the performance of the filtering scheme by comparing the 
sensitivity (Se) and the positive predictive value (PPV) of 
an automated ventilation detector before and after filtering. 
 

 
Figure 1. OOH capnograms. A) Clean capnogram B) 
Corrupted capnogram, with oscillations from CC 
appearing in the baseline. C) Corrupted capnogram with 
CC artefact spanning from the plateau to the baseline. 
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2. Materials and methods 

2.1. Database description and annotation 

The dataset consisted of a 60 episodes from a large 
OHCA registry collected between 2011 and 2016 by 
Tualatin Valley Fire & Rescue (TVF&R), an advanced life 
support first response Emergency Medical Services (EMS) 
agency in Oregon (USA). Episodes were recorded using 
Heartstart MRx monitor-defibrillators (Philips Medical 
Systems, Andover, MA, USA) equipped with real-time 
CPR feedback technology (QCPR, Laerdal Medical, 
Norway). Capnography was acquired using sidestream 
technology (Microstream, Oridion Systems Ltd, Israel). 
The signals used in the study were the capnogram, the 
compression depth (CD) signal from the QCPR system, 
and the transthoracic impedance (TI) signal acquired from 
the defibrillation pads.  

We annotated a capnogram as corrupted if evident CC 
oscillations appeared during more than 1 min of CC time. 
Half of the 60 episodes were corrupted by the CC 
oscillations. Clean and corrupted capnograms were 
randomly allocated into a training set (30 episodes, 15 
clean + 15 corrupted) and a test set (30 episodes, 15 clean 
+ 15 corrupted). 

Ventilations and CC instances were annotated in all the 
episodes. Figure 2 shows an example of the annotation 
process. Ventilations were manually annotated using the 
TI signal which was low-pass filtered in order to suppress 
CC oscillations (Fig. 2 middle panel, filtered TI depicted 
in blue, raw TI in grey). Ventilations were annotated in the 
position associated to the inspiration onset (vertical lines) 
corresponding to a rise in the TI. CC instances were 
annotated in every relative maxima of the CD signal (Fig. 
2, top panel, red dots) corresponding to the maximum 
depth reached at each CC. 

 
Figure 2. Example of ventilation and CC instance 
annotation. 
 

2.2. Ventilation detector 

The ventilation detection algorithm processes the 
capnogram and is based on a finite-state-machine model. 
The capnogram consists of a short inspiration time (low 
values of CO2 pressure) and a longer expiration time (high 
CO2 values). The aim of the detector to identify the instants 
corresponding to CO2 downstrokes and upstrokes. 

The algorithm first distinguishes inspiration from 
expiration identifying potential ventilations. These 
candidates are characterized by their duration (𝐷"#, 𝐷%&) and 
classified as ventilation or non-ventilation, following a 
decision system based on thresholds (Figure 3). The 
algorithm is fully described in reference [4]. 
 

 
Figure 3. Graphical definition of the detector parameters. 
 
2.2. Filtering strategies 

2.2.1 Open-loop adaptive filter 

The suppression of the oscillations induced by the CC 
on the capnogram was based on an open-loop adaptive 
filter. According to Figure 4, the open-loop adaptive filter 
is based on the application of the information obtained 
from a reference input signal to the adjustment of the 
settings of the filter. In this kind of systems there is no 
feedback from the output [5]. 

 

 
Figure 4. Open-loop adaptive filter diagram. 

 
The open-loop adaptive filtering strategy was designed 

as a Butterworth band-stop filter, continuously tuned to the 
average CC rate in 2-s analysis windows. The design 
parameters were: the order, 𝑁() and the 3dB bandwidth, 𝐵() 
of the filter, as well as the central frequency of the stop 
band, f0. The frequency 𝑓, was obtained from the 
annotations of the CC instances on the CD signal (Figure 
5). The parameter 𝑓, was calculated as the average CC rate 
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during 2s-intervals. If the 2s-interval contained less than 3 
CC, 𝑓, was the same as the one used in the previous 
interval. 

 
Figure 5. Calculation of parameter 𝑓,. 

 
The order and the bandwidth of the adaptive filter 

optimized with the training set, selecting finally 𝑁() = 2 
and 𝐵() = 1𝐻𝑧, respectively. 

 
2.2.2 Fixed-coefficient filter 

We also used a fixed-coefficient low-pass Butterworth 
filter for comparison. The design parameters were the 
order, 𝑁23 and the 3dB cut-off frequency of the filter, 𝑓23. 
After analyzing the spectral characteristics of different 
capnograms and CD signals, the final values of both 
parameters were optimized with the training set. 

 
2.3. Performance evaluation 

The goodness of the filtering strategy was assessed by 
comparing the sensitivity (Se) and the positive predictive 
value (PPV) of the ventilation detector, before and after 
filtering. Se was defined as the percentage of annotated 
ventilations that were correctly detected. PPV was defined 
as the percentage of detected ventilations that were correct. 
The maximum admissible tolerance for the position of the 
detection and the annotation was 500ms. We provide 
separate results for clean and corrupted subsets. 

We optimized the adaptive filter parameters (𝑁(), 𝐵()) 
and the fixed-coefficient filter parameter (𝑁23, 𝑓23) with the 
training set to maximize Se while maintaining PPV above 
92%. 

 
3. Results 

The order and the bandwidth of the adaptive filter were 
optimized to 𝑁() = 2 and 𝐵() = 1𝐻𝑧, respectively. 
Similarly, the order and the bandwidth of the fixed-
coefficient filter were 𝑁23 = 8 and 𝑓23 = 1.5𝐻𝑧. 

Table 1 summarizes Se and PPV results for the test set, 
comprising 7195 ventilations. Globally, Se and PPV before 
filtering were 93.0% and 92.2%, respectively. In case of 

the fixed-coefficient filter, Se and PPV increased to 97.7% 
and 94.8%, respectively. The increments were similar in 
case of the open-loop adaptive filter, with a Se of 97.7% 
and a PPV of 95.3%. 

For the clean set (3905 ventilations), the results stayed 
stable: Se and PPV were close to 99%, before and after 
filtering, for both filtering strategies. However, for the 
corrupted subset (3290) Se and PPV were low: 84.8% and 
84.0%, respectively, before filtering. After applying the 
fixed-coefficient filter, Se increased to 95.4% and PPV to 
90.3%. Applying the open-loop filter the increment of the 
values of Se and PPV are similar to those ones obtained 
with the fixed coefficient filter (95.6/91.5%, respectively),  
 
Table 1. Se and PPV for the test set, before filtering and 
after fixed-coefficient (FC) and Open-loop (OL) adaptive 
filtering. 

 
 Before 

(Se/PPV) 
FC 

(Se/PPV) 
OL 

(Se/PPV) 
Whole set 93.0/92.2 97.7/94.8  97.7/95.3 
 Clean 99.8/99.1 99.6/98.7 99.5/98.7 
 Corrupted 84.8/84.0 95.4/90.3 95.6/91.5 
 

Figure 6 shows the boxplots of Se and PPV values 
before and after filtering with both strategies. For both 
filters, the dispersion of Se and PPV was very low before 
as well as after filtering, in case of the clean episodes. 
However, the dispersion of both parameters was quite 
relevant for corrupted episodes before filtering.  

The results demonstrate that filtering the capnogram in 
case of clean episodes maintains good results of Se and 
PPV, and improve them in presence of artefact. 
 
4. Conclusions 

The current resuscitation guidelines for advanced life 
support recommend the use of the capnogram during CPR. 
The presence of high-frequency oscillations in the 
capnogram during CC may difficult the interpretation of 
the signal. 

The work presents two filtering techniques to suppress 
the oscillations induced during CC: a simple fixed-
coefficients filter and an open-loop adaptive filter. 

The results demonstrate that the filtering of the 
capnogram provides a larger reliability in the automated 
detection of ventilations. The global results obtained for 
the complete test set, where clean and corrupted episodes 
were analyzed, are quite similar for both techniques. The 
improvement is specifically relevant in the presence of the 
artefact induced by CC. In this case, the open-loop 
adaptive strategy provides better results, with a better 
balance between the sensitivity and the positive predictive 
value. For the clean subset, the results stay stable before 
and after filtering. 
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Figure 6. Se and PPV for the test set before filtering (NF, 
left), after fixed-coefficient filtering (FC, middle) and after 
closed-loop adaptive filtering (CL, right). Boxes show the 
median and IQR. Outliers are represented by dots 
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