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Abstract

Drug side-effects are crucial issues in both the pre-
market drug developing process and post-market drug
clinical applications. They contribute to one-third of drug
failures and cause significant fatality and severe morbid-
ity. Thus the early identification of potential drug side-
effects is of great interests. Most existing methods es-
sentially rely on leveraging few drug similarities directly
for side-effect predictions, ignoring the performance im-
provement by drug similarity integration and optimization.
In this study, we proposed an optimized drug similarity
framework (ODSF) to improve the performance of side-
effect predictions. First, this framework integrates four
different drug similarities into a comprehensive similar-
ity. Next, the comprehensive similarity is optimized via
clustering and then enhanced by indirect drug similarity.
Finally, the optimized drug similarity is employed for side-
effect predictions. The performance of ODSF was eval-
uated on simulative side-effect predictions of 917 drugs
from the DrugBank. Extensive comparison experiments
demonstrate that ODSF is competent to capture drug fea-
tures from diverse perspectives and the prediction perfor-
mance is significantly improved owing to the optimized
drug similarity.

1. Introduction

Drug side-effects are effects which are secondary to the
intended effects [1]. They have drawn attention of the
society because they cause a large number of morbidity
and fatality every year. Therefore, the early identifica-
tion of potential side-effects to avoid serious harms and
financial loss is of great importance. For this purpose, ex-
perimental approaches which test compounds with in vitro
biochemical and cellular assays were proposed. However,
drug side-effect prediction remains challenging because of
the expensive and long-term process of experimental ap-
proaches. In recent years, several computational meth-
ods have been proposed for side-effect predictions. Most
of these methods are based on the hypothesis that similar
drugs are more likely to share the same side-effects. Ac-
cording to the similarity types they adopt, these methods

can be classified as follows:
(1) Target-protein similarity based methods, which uti-

lize target-protein similarity directly or pathway similar-
ity which involves target-proteins indirectly to measure the
similarity between drugs. Two previous studies demon-
strated that side-effects and target proteins have strong re-
lations [2] [3]. Huang et al. developed a novel computa-
tional framework by combining clinical observation data
with drug target data to predict side-effects of trial drugs
[4]. Their results showed that the prediction performance
improved significantly owing to incorporating prior knowl-
edge including the drug target data. Pathways are series
of actions among molecules in a cell. They can trigger
the assembly of new molecules, including proteins. Previ-
ous enrichment analyses using KEGG and Gene Ontology
reveal that the correlated sets were significantly enriched
with proteins involved in the same biological pathways [5].
Side-effects can be seen as phenotypic outcomes by drugs
targeting proteins in the same correlated set. Thus there is
some-how relationship between side-effects and pathways.
Fukuzaki et al. developed an efficient algorithm method
named “CoopeRative Pathway Enumerator” to identify co-
operative pathways which share common active conditions
[6]. Finally, these identified cooperative pathways were
leveraged to predict drug side-effects and achieved satis-
factory results.

(2) Chemical structure similarity based methods, which
measure the drug similarity by their chemical structures.
Atias et al. conducted the canonical correlation analysis
(CCA) between drug chemical structures and side-effects
to predict new side-effects [7]. It is one of the pioneer-
ing work on predicting multiple side-effects at a time.
Yoshihiro et al. tried to improve side-effect prediction
by integrating drug chemical structures and target proteins
[8]. Simulative prediction of side-effects from the Drug-
Bank demonstrated that the prediction performance was
improved significantly by integration of the two informa-
tion sources.

Most existing computational prediction methods focus
on prediction from one or few drug similarity sources. Too
few similarity sources may not capture enough drug fea-
tures. Moreover, these methods utilize drug similarities
directly for predictions, ignoring the value of optimization
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from such similarities and indirect similarities that could
improve the prediction performance. In this study, we
proposed an optimized drug similarity framework (ODSF)
to improve the side-effect prediction performance. This
framework integrates four different drug similarities into
a comprehensive similarity first. Next the comprehensive
similarity is further optimized via clustering and then en-
hanced by indirect similarity. Finally, the optimized drug
similarity is used for side-effect predictions.

2. Materials

2.1. Drug Side-effect Profiles

The side-effect data set was downloaded from SIDER
[9]. We focus on side-effects of drugs which are grouped
as “Small Molecules” in DrugBank. Our basic idea lies
in predicting side-effects by drug similarities. Therefore,
those drugs whose similarity information are not available
were removed. Finally, we obtained a dataset constituted
by 917 drugs, 500 side-effects and 78,855 drug side-effect
associations.

2.2. Drug Similarity Data

Four types of drug similarity will be integrated as the
original comprehensive drug similarity (OCDS) using the
following formula.

Simcom(dj , dk) = [Schem(dj , dk) + Spro(dj , dk)

+Ssub(dj , dk) + Sthera(dj , dk)]/4
(1)

A. Chemical Structure Similarity The chemical-
structure fingerprints of drugs were retrieved using CDK
from their SMILES files downloaded from the DrugBank.
For a drug d, it can be represented by its fingerprint
fd(fd

i ∈ {0, 1}, i ∈ {1...1024}). Then the chemical simi-
larity score between drug dj and drug dk is given by:

Schem(dj , dk) =

∑1024
l=1 (f j

l ∧ fk
l )∑1024

l=1 (f j
l ∨ fk

l )
(2)

where ∧ and ∨ are bitwise “and” and “or” operators re-
spectively; f j

l and fk
l are the lth bit of fingerprints of drug

dj and drug dk respectively.
B. Drug Target Protein Similarity The similarity be-

tween two proteins is calculated based on the overlapping
rate of their associated Gene Ontology (GO) terms. Sup-
pose GOm and GOn are the GO term sets for protein pm
and protein pn respectively, the similarity score between
pm and pn would be

Sgo(pm, pn) =
GOm ∩GOn

GOm ∪GOn
(3)

where ∩ and ∪ are intersection and union operators respec-
tively. The GO terms of target proteins were downloaded
from the EMBL-EBI website. Then the drug target pro-
tein similarity between each pair of drugs was calculated
by integrating protein similarities of their target proteins.

Spro(dj , dk) =

∑Nj

m=1

∑Nk

n=1 Sgo(pm, pn)

Nj ∗Nk
(4)

where Nj and Nk are the total number of proteins in the
interacted protein sets of drug dj and drug dk respectively.

C. Drug Substituent Similarity The drug substituent
similarity between drug dj and drug dk is calculated via
Jaccard score which is defined as follows:

Ssub(dj , dk) =
SUBj ∩ SUBk

SUBj ∪ SUBk
(5)

where SUBj and SUBk are the substituent sets of drug dj
and dk respectively.

D. Drug Therapeutic Similarity
The Anatomical Therapeutic Chemical (ATC) codes

used in this study were extracted from the DrugBank.
There are 5 levels in the ATC code. Consequently, we cal-
culated the drug therapeutic similarity at each level sepa-
rately first. The lth level drug therapeutic similarity (Sl)
between the drug dj and dk is defined as follows:

Sl(dj , dk) =
ATCl(dj) ∩ATCl(dk)

ATCl(dj) ∪ATCl(dk)
(6)

where ATCl(dj) denotes the lth level ATC code for drug
dj . The average value of the five-level similarity scores is
used as the therapeutic similarity of a drug pair:

Sthera(dj , dk) =

∑n
l=1 Sl(dj , dk)

n
(7)

where n = 5, is the total number of ATC code levels.

3. Methods

The overall framework of ODSF is illustrated in Figure
1. At the beginning, drugs and side-effects which don’t
satisfy the requirements are removed. Then four differ-
ent drug similarities are integrated as the original compre-
hensive drug similarity. Next the original comprehensive
similarity is further optimized via ClusterONE clustering
and indirect similarity optimization. After that, the two
types of drug similarities are integrated as the optimized
similarity. Later, a balanced drug training set is built for
each side-effect using the proposed strategy. Afterwards,
drugs are vectorized according to their optimized similari-
ties with each drug in the training set. Finally, a classifier is
built and trained for each side-effect. Corresponding clas-
sifier is employed to predict potential drugs which could
cause the side-effect.
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Figure 1. Flow diagram of drug side-effect prediction
based on ODSF.

3.1. Drug Similarity Optimization

A. Optimization based on Clustering
Based on the hypothesis that similar drugs are more

likely to share the same side-effects, we proposed to op-
timize drug similarity via clustering. We first built a
weighted drug sharing network based on the known drug-
side-effect associations, called DrugNetwork. In DrugNet-
work, the vertexes V = {d1, d2, . . . , dn} denote the set of
n drugs, the edges represent the drug-drug associations,
and the edge weights denote the number of common side-
effects shared by corresponding drug pairs. Then we lever-
aged a graph clustering method “ClusterONE” to iden-
tify potential drug clusters in DrugNetwork. According to
ClusterONE, the cohesiveness of a cluster Ci is defined as
follows:

Coh(Ci) =
Win(Ci)

Win(Ci) +Wbound(Ci)
(8)

where Win(Ci) is the sum of the edge weights within
the cluster Ci, Wbound(Ci) denotes total weights of edges
which connect vertexes from cluster Ci to the rest of the
DrugNetwork. For drug dj and dk belong to the same
cluster Ci, their similarity value will be optimized as
Simcluster(dj , dk) = (1+Coh(Ci))∗Simcom(dj , dk),
where Coh(Ci) is the cohesiveness of cluster Ci and
Simcom(dj , dk) is the OCDS between drug dj and drug
dk. Note for the cluster-based optimized similarity be-
tween two different drugs which is equal or great than 1,
we normalized it as 0.9999.

B. Optimization by Indirect Drug Similarity Indi-
rect drug similarity refers to similarity values which are
not measured by drug properties directly but by exist-
ing similarity. In this study, we developed a propagation
framework to compute the indirect similarity between each

drug pair. Here we leverage a drug pair, i.e., dj and dk,
to illustrate the process of computing indirect drug sim-
ilarity. Suppose dj and dk both belong to the drug set
D = {d1, d2, . . . , dn}. Then their indirect drug similar-
ity will be as follows:

Simids(dj , dk) =

∑
Simcom(dj , di) ∗ Simcom(di, dk)

n− 2
(9)

where Simcom(dj , di) and Simcom(di, dk) are the
OCDS between drug dj and di, and di and dk respectively
(1 ≤ i ≤ n, i 6= j and i 6= k).

C. Integration of Optimized Drug Similarity We
adopted the following formula to integrate the two differ-
ent types of drug similarity.

Simop(dj , dk) =
Simcluster(dj , dk) + Simids(dj , dk)

2
(10)

where Simcluster(dj , dk) and Simids(dj , dk) are the
cluster-based optimized similarity and indirect similarity.

3.2. Optimization via Building Balanced
Drug Training Sets

After careful analysing, we found that the number of
labeled drugs for different side-effects is different. There-
fore, the training set will be unbalanced if we directly take
the labeled and unlabeled drugs as positive and negative
samples respectively. However, unbalanced training sets
would largely degrade the prediction performance. Thus,
to improve the prediction performance, we proposed the
following steps to build a balanced drug training set for
each side-effect. (a) Obtain the smaller number ns from
the labeled drug number and the unlabeled drug number;
(b) Select ns labeled drugs and ns unlabeled drugs to form
the positive and negative sample set respectively.

4. Results

F1-Score and macro-averaging F1-Score are leveraged
to evaluate the prediction performance in this study. To
demonstrate the improvement of our method, we evaluated
the performance of side-effect prediction based on OCDS
and our optimization framework over the 5-folds experi-
ment. Four different classifiers namely KNN (K-Nearest
Neighbors), SVM (Support Vector Machine), ELM (Ex-
treme Learning Machine) and RBF (Radial Basis Func-
tion) network were employed in the experiment. Related
results are illustrated in Figure 2 and Table 1. Figure 2
shows the scatter plots of F1-Scores using the two meth-
ods, where x-axis denotes F1-Scores based on OCDS and
y-axis denotes F1-Scores based on ODSF. To better vi-
sualize the comparison results, we added a reference line
“y = x” on which F1-Scores are equal to each sub-figure.
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It can be seen clear from Figure2 that most dots distribute
on the top-left area. It means the prediction performance
based on our ODSF outperformed that based on OCDS for
most side-effects. To investigate how much improvement
is made by our method, we further calculated the macro-
averaging F1-Scores of the top 50, top 100, top 200 and
all side-effects as listed in Table 1. Clearly, the predictions
based on our optimization framework achieved signicantly
higher performance than that base on OCDS. For exam-
ple, for the four classifiers from KNN to ELM, the macro-
averaging F1-Score improvement of top-100 side-effects is
6.9%, 18.4%, 19.1% and 9.3%.

Figure 2. Scatter plots of F1-Scores from predictions
based on OCDS and ODSF.

Table 1. Macro-averaging F1-Scores of predictions based
on OCDS and ODSF respectively.

Measure Top 50 Top 100 Top 200 All
KNN & OCDS 0.694 0.634 0.565 0.464
KNN & ODSF 0.719 0.703 0.687 0.614
SVM & OCDS 0.672 0.548 0.355 0.305
SVM & ODSF 0.773 0.732 0.692 0.613
RBF & OCDS 0.608 0.536 0.447 0.309
RBF & ODSF 0.761 0.727 0.692 0.629
ELM & OCDS 0.663 0.579 0.464 0.264
ELM & ODSF 0.699 0.672 0.643 0.588

5. Conclusion

In this study, we proposed a method to optimize drug
similarity for side-effect prediction. First, four differ-
ent types of similarities which could measure the similar-
ity between drugs from different perspectives were fused
together as OCDS. Then a clustering-based method was
adopted to optimize OCDS. Next, indirect drug similarity
which could reinforce the direct drug similarity was com-
puted. Finally, the clustering-optimized similarity and in-
direct similarity were integrated into a unified framework
for drug side-effect prediction. Extensive comparison ex-
periments on drugs from DrugBank demonstrate that our
optimized similarity based prediction method achieved
much better performance than that based on OCDS.
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