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Abstract 

We present in this paper an extensive comparison of 

compression methods adapted to impedance and field 

potential signals of cardiomyocytes. Different 

combinations of the traditional scheme of lossy 

compression have been tested and other original methods 

such as compressed sensing were implemented as well. All 

algorithms are assessed on several criteria such as 

compression ratio, distortion of the data, etc. We show that 

the selected method presents the ability and reliability to 

compress sensitive data with a compression ratio greater 

than 5:1 while preserving the relevant information content 

of the recorded data.  

 

1. Introduction 

To accurately identify potentially torsadogenic 

compounds in an earlier stage of drug development, 

innovative preclinical strategies including label-free 

impedance and extracellular field potential recordings of 

stem cell-derived cardiomyocytes have been recently 

proposed. Unfortunately, they produce high-content 

signals and the size of their data files may exceed 10GB, 

which prevents any web data transfer for remote data 

analysis. Clearly, those signals have a different origin and 

morphology than classical electrocardiograms. Therefore, 

the state-of-the-art compression algorithms for ECG [1,2] 

may not be optimal for those new signals. Our objective is 

to compare the performances of several compression 

algorithms applied to those data.  

 

2. Methods 

There exist two types of compression algorithm. 

Lossless compression has the ability to perfectly 

reconstruct the original data from the compressed ones  

(without any error) but their compression ratio (𝑅 =
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑑𝑎𝑡𝑎
) are low. In contrast, lossy 

compression introduces loss to obtain a bigger 

compression ratio. Generally, lossless data compression is 

a component of lossy algorithms. 

 

2.1. Traditional scheme 

Lossy compression schemes are composed of three 

main stages. 

1) A mathematical transformation is applied to the 

original data. One can use Fourier transform (FFT), 

Wavelet transform (DWT), Cosinus transform 

(DCT), etc. The sparsest the signal will be in a 

domain, the more efficient the compression method 

will be. 

2) A loss of information is achieved through 

quantization and thresholding. The idea is to further 

sparsify the new representation of the data by 

removing the coefficients with low magnitude 

which have small impact on the reconstruction.  

3) Finally, a lossless compression algorithm is used to 

exploit the structure of the new (binary) signal. 

 

The most critical step is the second one. By sparsifying 

the transformed data, the signal entropy is expected to 

drop. The signal entropy corresponds to the average 

number of bits required to write one coefficient. The 

explicit formula of entropy is: 

 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑃(𝑥𝑖)

𝑖

 𝑙𝑜𝑔2(𝑃(𝑥𝑖)) 
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with 𝑃, the probability of one coefficient 𝑥𝑖 to appear. It 

means that if a signal of 100 samples has an entropy of 3, 

the signal will take at least 3*100 = 300 bits in memory. 

The smaller the entropy is, the greater you can compress 

your data. It is important to mention that there is a trade-

off between this loss of information and the correct 

reconstruction of the signal. The goal is to compress the 

signal without perceptible distortion of it. In order to check 

this error, the percentage root-mean square difference is 

computed. It measures the percent of energy difference 

between the original and the reconstructed data: 

 

𝑃𝑅𝐷 = 100 ∗  √
∑ (𝑦𝑖−𝑥𝑖)2

𝑖

∑ 𝑥𝑖
2

𝑖
    (1) 

 

with 𝑥 the original data and 𝑦 the reconstructed data. 

The greater the PRD is, the most compressed the data can 

be but the more you lost information. 

 

2.2. Selected methods 

In each step of the lossy compression algorithm, we 

selected different possibilities. Every method works on 

one-dimensional signals. 

For the mathematical transformation stage, Wavelet and 

Cosinus transform were retained. Both returns signals of 

the same size than input data, contrary to Fourier transform 

(which generates complex coefficient, twice the size of the 

input). In general, impedance and field potential signals are 

sparse in both domains. After different tests, we selected 

Daubechies 4 as the most efficient family to represent our 

signals in the wavelet domain. 

In the second step, a simple quantization of 10−3 was 

selected in order to reduce the signal entropy without 

increasing the resulting PRD. Then, a global and hard 

thresholding is dynamically computed. 

Finally, we selected four lossless algorithms: Huffman 

coding, Run-Length encoding (RLE), Deflate and adaptive 

Huffman coding.  

 

2.3. Compressed Sensing 

Compressed Sensing (CS) does not follow the classical 

scheme. It is a recent technique based on sparse data 

representation. The idea is to bypass the Nyquist-Shannon 

theorem by reconstructing a signal from fewer samples of 

data than required [3-5].  

Consider a real-valued vector 𝑥 ∈  𝑅𝑁 and the matrix 𝛹 

which represents an orthonormal basis: 

 

 𝑥 =  𝛹. 𝜃     (2) 

 

where 𝜃 is the coefficient vector of 𝑥. If most of the 

coefficients of 𝜃 have negligible amplitude, the signal is 

said to have a sparse representation in the domain. The 

model of CS is: 

 

 𝑦 = ɸ 𝑥 =  ɸ 𝛹. 𝜃     (3) 

 

with ɸ ∈  𝑅𝑀∗𝑁 (𝑀 ≪ 𝑁) the sensing matrix and 𝑦 is 

the compressed signal.  

 

There are two main issues for CS: 

1) The design of the sensing matrix is crucial. On the 

one hand, the less coefficients it selects the smaller 

the compressed signal will be; on the other hand, 

the small amount of selected coefficient has to fully 

represent the information of x. The matrix is 

constant throughout the process and must respect 

the RIP property. 

2) The reconstruction of the original signal x from the 

compressed signal y is a complex problem, which 

can be solved through the relaxation of the 𝑙0-norm 

with the 𝑙1-norm and with greedy algorithms. 

 

We selected the cosinus basis and tested different 

sensing matrix such as Gaussian, Binary and Binary Block 

Diagonal matrices [6]. Then, we selected Basis Pursuit 

(BP) for the reconstruction algorithm. 

 

3. Results 

3.1. Dataset 

The databases used for the tests come from Nanion 

technologies (CardioExcyte 96) and are composed of 

impedance (𝐹𝑠 = 77.35 𝐻𝑧) and field potential (𝐹𝑠 =
10𝑘𝐻𝑧) signal recording of 20 seconds each.  

 

 
 

Figure 1. 10-second extract of an impedance signal, which 

represents the contractility of the cardiac tissue developed 

in the well. 
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Figure 2. 10-second extract of a field potential signal, 

which represents the ionic exchange (K+, Ca2+, Na+) 

occurring in the well. 

 

3.2.  Results with CS 

To wisely choose the sensing matrix, we computed its 

incoherence with the dictionary at a given PRD.  

 

Table 1. Coherence between the sensing matrix and the 

cosinus dictionary for an impedance signal. 

 

PRD 

(%) 

Gaussian Binary Binary 

Block 

Diagonal 

5 5.54 5.05 4.47 

4.5 5.62 5.05 3.99 

3 5.44 5.74 3.16 

 

The more incoherent the sensing matrix is with the 

dictionary, the greater the reconstruction of the signal will 

be. The deterministic Binary Block Diagonal matrix [6] 

presents the best incoherence.  

 

However, the main drawback with the BBD matrix is its 

size. The quotient 
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑖𝑔𝑛𝑎𝑙

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙
 has to be an 

integer and for an easy use a multiple of 2 or 5. This matrix 

cannot work on all size of signals and zero padding leads 

to artefact in the reconstruction. Even when compressed 

with other dictionaries, edge effects and artefacts were 

damaging the reconstructed signals. 

 

 

3.3.  Traditional scheme algorithms 

Regarding the mathematical transformation, DCT was 

chosen over DWT for impedance signal and DWT was 

selected for field potential because each domain lowered 

the signal entropy best for each type of signal after 

quantization (see Table 2). 

  

Table 2. Signal entropy for impedance signals after 

quantization (on a database of 1537 signals of 20 seconds 

each) 

 

Signals DWT DCT 

Healthy 4.25 2.8 

Slight arrhythmia 3.5 3.4 

Arrhythmia 4.54 3.8 

Noisy 5.8 5.72 

Mean 4.52 4.18 

 

 

After a dynamic thresholding, four lossless algorithms 

were tested on the databases. The compression ratio was 

the criteria of selection. Table 3 gathers the results for a 

database of impedance signals focusing on the 

compression ratio (one coefficient is stored on 16 bits).  

 

Table 2. Compression ratio for impedance signals (on a 

database of 1537 signals of 20 seconds each) 

 

Signals Huffman 

coding 

RLE Deflate Adaptive 

Huffman 

Healthy 2.33 1.82 1.47 5.81 

Slight 

arrhythmia 

2.28 1.67 1.38 6.5 

Arrhythmia 3.46 2.34 1.99 11.98 

Noisy 11.72 6.91 6.09 15.62 

Mean 4.94 3.18 2.73 9.97 

 

Clearly, Adaptive Huffman shows the best results. It has 

the good compression of Huffman coding without the 

drawback of the storage of the dictionary created by the 

algorithm. The dictionary is dynamically and identically 

created in the compression and the decompression 

allowing the transfer of only the compressed signal. 

 

The selected compression starts with a mathematical 

transform (DCT for impedance and DWT for field 

potential signals), followed by a quantization and dynamic 

thresholding and then Adaptive Huffman is applied. For 

the decompression, inverse Adaptive Huffman is 

computed on the compressed signal and then the inverse 

mathematical transform. 

 

4. Conclusion 

Results on all databases clearly present the ability and 

reliability of the different methods to compress sensitive 

data coming from cardiomyocytes and with our selected 

method, we achieved a compression ratio greater than 5:1. 

It enables biologists to use web-based remote analysis 
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tools by reducing the size of their files without distortion 

of their data. 
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