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Abstract 

Due to a significant spectral overlap between the 

motion artifact and underlying photoplethysmogram 

(PPG), reliable automated PPG analysis in real-life 

environment may be challenging. To evaluate the impact 

of motion artifact on the accuracy of automated PPG pulse 

detection, we designed a noise stress test (NST) in which 

artifact-bearing (noise-added) recordings are assembled 

from actual recordings by selecting intervals that contain 

predominantly motion artifact. To assemble the NST 

database, we analyzed 2000 synchronized 

electrocardiogram (ECG) and PPG recordings from 

MIMIC-II database. One-minute segments with the highest 

and lowest agreement between the ECG beats and the PPG 

pulses were selected using a semi-automated protocol. The 

resulting NST database included 52 artifact-free base 

recordings by visually selecting clean segments with 

normal pulse rate and rhythm, and 10 pure artifact 

recordings by selecting segments with negligible spectral 

content from the base signal. Cross combination of the 

base and artifact recordings, by calibrating the level of 

added artifact, generated 520 one-minute PPG signals for 

each desired signal-to-noise ratio (SNR). For each 

combined signal, the performance of automatic pulse 

detection and time-domain pulse rate variability analysis 

was evaluated by using the annotations from artifact-free 

base recordings as reference. 

 

 

1. Introduction 

In recent years, using wearable devices for analysing 

physiological signals has been getting a lot of attention due 

to their ease of use and low cost. One of the most popular 

techniques is photoplethysmography (PPG).  However, 

PPG is prone to motion artifact, difficult to protect against, 

which can corrupt the recorded signal. Some wearable 

devices use accelerometers to detect periods of movement 

to discard the noisy intervals, but these additional sensors 

result in higher complexity, processing requirements, and 

cost. Furthermore, the knowledge of movement periods, 

although may help to discard noisy segments, has limited 

to no use for cleaning the corrupted recording.  

Although the impact of motion artifact on analysis of 

PPG waveforms has been studied by researchers [1,2], 

little work has been done to truly test the impact of 

different levels of motion artifact on the performance of 

automated algorithms. One approach is to use a technique, 

usually called noise stress test, which is well established 

for electrocardiogram (ECG) recorders.  However, unlike 

ECG devices, there are no widely-accepted standards for 

designing a PPG device. Therefore, different devices may 

induce different patterns of motion artifact on the PPG 

waveform. In other words, noise recorded by one PPG 

device may not be suitable for testing a different PPG 

device. 

In this study, we developed a customizable method to 

generate an artifact-bearing database with controlled 

signal-to-noise ratio (SNR) using actual PPG recordings 

with simultaneously recorded ECG waveforms (to be used 

as reference). The database can be used to perform a 

customised noise stress test for any particular device to 

measure its performance in the presence of artifact. Using 

this technique, one can evaluate the performance of any 

automated PPG-based pulse detection algorithm at 

different levels of SNR. We also measure the interbeat 

intervals between normal PPG pulses and use them to 

calculate a few time-domain pulse rate variability (PRV) 

parameters to study the impact of noise on the reliability of 

those parameters. 

 

2. Methods 

We generated a library of SNR-controlled PPG 

waveforms from actual PPG signals recorded 

simultaneously with ECG, and used them to study the 

impact of different levels of noise on our pulse detection 

algorithm. We also studied the deviation in a few time-

domain PRV parameters from their reference values due to 

added noise.  

In the following we describe our proposed technique in 

details. 

 

2.1. Building SNR-controlled database 
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We analyzed 2000 segments (about 1800 hours) of 

simultaneously recorded ECG and PPG waveforms in the 

MIMIC-II database [3]. ECG waveforms were annotated 

using Philips ST/AR algorithm. Normal ECG beats were 

counted within 1-min sliding windows shifting at 10-sec 

steps. The ratio of normal (sinus rhythm) ECG beats (Nd) 

to all beats (Na) in each 1-min window is defined as the 

quality of that ECG segment. 

QECG = Nd/Na                                            (1) 

PPG waveforms were analyzed by our newly designed 

pulse-detection algorithm where the PPG pulses and their 

fiducial points (peak, upslope, and trough) were measured 

for each detected PPG pulse [4]. Detected PPG pulses in 

each sliding 1-min window with a 10-sec step were 

matched to their corresponding ECG beats. To perform the 

matching, any single PPG pulse between two adjacent 

ECG beats was assigned to the closest beat, provided their 

distance was smaller than a pre-defined threshold. 

Otherwise, the detected PPG pulse was ignored and 

annotated as missing. 

The ratio of the number of matched PPG pulses in a 1-

min intervals (Nm) to the number of all ECG beats in that 

interval is used as a measure of PPG quality defined as 

QPPG = Nm/Na                                              (2) 

 

a. Selecting clean segments 

To select a clean (artifact-free) PPG segment, the 

following hybrid high quality measure is defined which 

mostly takes into account the quality of PPG segment, but 

also incorporates the quality of corresponding ECG 

segment. 

QH = QPPG
2 .QECG                                         (3) 

QECG is used to reduce the impact of low-quality ECG 

segments on the evaluation of our PPG analysis.  

The 1-min PPG segments with highest QH are selected 

as clean segments. After visual examination of all 

automatically-selected clean PPG segments, 52 were 

chosen as our base artifact-free waveforms. 

Figure 1 shows an example of a clean PPG segment 

used as a base recording in the SNR-controlled PPG 

database. 

 
Figure 1. An example of a clean PPG segment used as a 

base recording in the SNR-controlled PPG database. 

b. Selecting artifact segments 

To select the pure artifact segments, we define the PPG 

low quality measure as 

QL = (1/QPPG
2).QECG                                        (4) 

which includes the quality of both the PPG segment (as a 

major factor) and the ECG reference segment (to some 

extent). Segments significantly corrupted by artifact are 

automatically detected by the algorithm. The spectral 

contents of the 1-min artifact PPG segments and their 

corresponding ECG segments were visually reviewed to 

verify that they indeed did not contain any significant level 

of the underlying PPG spectral contents. A total of 10 1-

min artifact segments was chosen as the set of pure artifact 

waveforms. 

Figure 2 shows all selected artifact segments used in 

generation of the SNR-controlled PPG database. 

 

 
Figure 2. Artifact segments chosen for the SNR-

controlled PPG database. 

 

c. Generate artifact-bearing segments 

To generate the SNR-controlled artifact-bearing 

database, properly-scaled artifact segments at desired SNR 

values were combined with the clean PPG segments. 

Initially, the baseline of both the clean PPG and artifact-

corrupted PPG segments were removed. A single root-

mean-square (rms) amplitude (Rc) was calculated for each 

1-min clean PPG segment. For the artifact segments, rms 

amplitude at any sample s was calculated in 1-sec sliding 

windows around the sample (Ra(s)).  

The artifact segment scaling factor was determined by 

α(s) = 10(-SNR/20) Rc

Ra(s)
                                    (5) 

The artifact-added PPG segment was then defined as 

PPGartifact-added(s) = PPGclean+ α(s).PPGartifact            (6) 
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Figure 3 shows an example of the SNR-controlled PPG 

segments generated from one clean and one artifact 

segment scaled at different levels of SNR. 

 

Figure 3. An example of the SNR-controlled PPG 

segments generated from one clean and one artifact 

segment by lowering SNR from 24dB to -24dB. 

 

2.2. Pulse detection algorithm 

At each SNR, the timestamp of PPG pulses detected by 

the algorithm are compared with reference pulses in 

corresponding clean PPG segment; the closest pulse to 

each reference pulse within a pre-defined interval is 

labeled as normal and the other detections are labeled as 

abnormal. 

 

a. Performance evaluation 

At each SNR, sensitivity (Se) and positive predictive 

value (PPV) of the pulse detection algorithm were 

calculated by counting the number of true positives (TP –

PPG pulses correctly detected), false positives (FP – 

detections where no reference pulse existed), and false 

negatives (FN – undetected PPG pulses) as follows 

Se = TP / (TP+FN)                                       (7) 

PPV = TP / (TP+FP)                                      (8) 

An example of true and false positives, as well as false 

negative PPG pulses, is depicted in figure 4. 

 

Figure 4. An example of true positive (TP), false positive 

(FP), and false negative (FN) PPG pulse detection for an 

artifact-bearing PPG signal at 0dB. The black dots at the 

top of panel show the location of reference pulses in the 

corresponding clean PPG. 

 

b. PRV measurements 

At each SNR level, the interbeat intervals between the 

peaks of adjacent normal PPG pulses were measured to 

calculate instantaneous pulse rate and a number of time-

domain PRV parameters (including pNN50, SDNN, and 

RMSSD [5]). 

 

3. Results 

We generated 8,840 one-minute artifact-bearing signals 

(52 clean segments cross-combined with 10 artifact 

segments, each at 17 different SNR levels from -24dB to 

24dB) to use as the evaluation database.  

At each SNR, the performance parameters of sensitivity 

and PPV were calculated and averaged over 520 PPG 

segments. As shown in Figure 5, reduction of SNR from 

24dB to -24dB decreases the sensitivity and PPV from 

100% to 35% and 52%, respectively. At 0dB, these values 

are 97% and 88%, respectively. 

Figure 6 shows the mean pulse rate (meanPR) and a 

number of time-domain PRV parameters versus SNR. The 

52 fine plots in each panel are the averages of that 

parameter for 10 artifact-bearing segments based on each 

clean segment. The bold plots are the medians of these 

averages. As seen, meanPR is not sensitive to artifact and 

can be calculated accurately even at very low SNR. 
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However, as is intuitively expected, the PRV parameters 

(pNN50, SDNN, and RMSSD) significantly increase by 

reducing SNR. For example, pNN50 increases by 7% at 12 

dB and 36% at 0dB from its reference artifact-free value of 

0.3%. SDNN increases by 5 milliseconds at 12dB and 28 

milliseconds at 0dB. 

 

4. Discussion and conclusions 

Unlike ECG devices, there are no widely-accepted 

standards for designing a PPG device. Therefore, different 

devices may react differently to motion artifact.  Using our 

method, one can perform a customizable noise stress test 

on their PPG analysis algorithm in order to assess its 

performance expected in a real-life environment.  

As hypothesized, motion artifact was shown to 

significantly impact the accuracy of automatic pulse 

detection and the validity of the PRV parameters. 

Although we detected a series of independent artifact 

segments and cross-combined them with clean data and 

verified the results statistically, the study resources can be 

extended in order to achieve more reliable results. The 

number and length of segments of pure artifact and clean 

data in any available database (e.g. MIMIC II) is limited. 

Hence, to expand the study new experiments and 

customized data collection may be needed. 
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Figure 5. Sensitivity and PPV values averaged over 520 

artifact-baring segments at each SNR. 

 

 
Figure 6. Average pulse rate and time-domain PRV 

parameters (pNN50, SDNN, and RMSSD) versus SNR. 

Fine plots are the averages of the parameters over 10 

artifact-bearing segments corresponding to each of 52 

clean segments. The bold plots are the medians of these 

averages. 
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