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Abstract

Imaging photoplethysmography (iPPG) is a promising
technology for contactless heart rate (HR) monitoring.
However iPPG signals are easily deteriorated by subject
movements and illumination changes. The purpose of this
study was to develop a signal quality index (SQI) for real-
time HR monitoring applications and to assess its perfor-
mance on a challenging dataset composed of videos of
moving subjects. HR was estimated using a multi-input
adaptive frequency tracking scheme, in which the iPPG
signals derived with different methods and their corre-
sponding SQIs were provided as inputs. Using the pro-
posed SQI, the average absolute error was reduced by
42%/45% when the forehead/entire face region was used
to derive iPPG signals, respectively.

1. Introduction

Imaging photoplethysmography (iPPG), also known as
remote photoplethysmography (rPPG), was introduced for
the first time in 2008 by Verkruysse et al. [1]. It con-
sists of the remote measurement of the cardiac pulse from
facial images of the subjects captured with a simple cam-
era, using visible light as illumination source. The most
simple technique to compute the iPPG signal from the im-
ages is the spatial averaging of the pixels encompassed in
a region of interest (ROI). More robust techniques have
been proposed to recover the cardiac pulses. Blind-source
separation-based methods were used in [2-4]. In [5], a
chrominance-based method was proposed. Feng et al. [6]
proposed an optical model was built to understand better
the origins of the iPPG signal and the impact of subject
movements. Based on their findings, the authors devel-
oped an adaptive green-red difference method (GRD) to
attenuate the effect of motion artifacts. In another study,
a promising technique called Spatial Subspace Rotation
(SSR) was introduced [7]. In this data-driven approach,
the temporal rotation of the RGB subspace of skin pixels
is estimated to derive the pulse. Later on, the same au-
thors proposed another approach called Plane-Orthogonal-
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to-Skin (POS) [8], in which a plane orthogonal to the skin
tone is used for projection, leading to SNR comparable to
the one obtained with the SSR method. The use of other
color spaces is another aspect that can be studied in the
context of the iPPG technology. For example, Tsouri et al.
[9] showed that the hue channel leads to lower error when
estimating HR, compared to the green channel.

However, despite the considerable progresses in the field,
the contactless nature of the iPPG technique makes it
very sensitive to disturbances induced by subject move-
ments and illumination changes. Moreover, the iPPG-
signal derivation technique leading to the highest SNR de-
pends on experimental conditions [8], which may addition-
ally vary over time. Therefore, a signal quality index (SQI)
can be valuable to 1) develop processing schemes involv-
ing a dynamic combination of the various reconstructed
signals and 2) detect bad-quality epochs during which the
estimated HR is not reliable.

2. Methods

Database: The database used in this study includes two
subsets: the “static subset”, composed of 22 4-minute
video-sequences of immobile subjects performing respira-
tion and handgrip exercises and the “motion subset”, com-
posed of nine 2-minute video-sequences of subjects ro-
tating their head to the left and to the right according to
an audio stimulus. Subjects were lying down during the
recordings. For each sequence, one-lead ECG and video-
sequence of the upper body region, in artificial lighting
conditions, were recorded simultaneously. The video se-
quences, acquired with a commercial RGB camera, were
sampled at 20 frames per second with a resolution of 1.3
megapixels. The reference HR was derived from the ECG
signal. A local maxima detection was first applied in order
to detect the R-waves and extract the RR intervals. Then,
the RR-intervals were uniformly re-sampled at 4 Hz to
compute the true instantaneous HR. This instantaneous HR
was then averaged on 4-second windows (3-second over-
lap) to compute the reference HR. All the subjects gave
informed consent.
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Calculation of iPPG signals: Our previous investigations
showed that the forehead is the best region on the face, in
terms of the fraction of power at HR [10]. Therefore, for
each sequence, the ROI was selected on the subject’s fore-
head. For the motion subset, the tracker described in [11]
based on the algorithm described in [12] was used. In this
algorithm, the adaptive tracking-by-detection is based on
structured output prediction achieved using an SVM learn-
ing framework. A budgeting mechanism is used to limit
the number of support vectors and allows the tracker to run
at high frame rates. In addition, a skin-segmentation step
was performed by selecting pixels whose hue and satura-
tion match known skin color. It should be mentioned that,
for some sequences, the fast rotations of the head were
challenging for the tracker, which had difficulties to fol-
low. As a consequence, some frames without skin pixels
were dropped for the computation of iPPG signals. For
this reason, all the analyses of the motion subset were also
performed for an ROI encompassing the whole face.
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Figure 1. Example to illustrate a typical tracker output
for the forehead ROI (on the left) and the corresponding
skin segmentation mask (on the right). White pixels of the
segmentation mask correspond to pixels detected as skin.

Different techniques were used to derive the iPPG time
series from the skin pixels of the ROI and the resulting sig-
nals were further combined in order to increase the robust-
ness of HR estimation. The following iPPG signals were
computed:

o iPPGgeen: Spatial averaging of pixels for green channel,
and band-pass filtering between 0.6 and 4 Hz.

o iPPGyy: Transformation of RGB space to HSV, spatial
averaging of pixels for hue channel and band-pass filtering
between 0.6 and 4 Hz.

o iPPGgrp: Adaptive green-red difference [6].

o iPPGgggr: Spatial subspace rotation, using a sliding win-
dow of length [ = 20 samples [7].

e iPPGpps: Plane-orthogonal-to-skin, using a sliding win-
dow of length [ = 20 samples [8].

SQI computation: The frame-to-frame average absolute
difference between pairs of corresponding pixels in the
ROI is first computed as follows:
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with pixy[n], the green channel value of the k* pixel
of the ROI, at frame n. Sudden surges of this quantity
are correlated with various disturbances such as motion,
illumination changes and camera occlusions, as shown in
Figure 2. When a sample is associated with a significant
DI increase, empirically defined as a current DI value at
least five times larger than the median DI over the past 50
samples, the sample is labeled as a candidate for the begin-
ning of a bad-quality region (i.e. SQI = 0). Besides, it was
observed that the iPPG signals were not all affected in the
same way by the disturbances. Therefore, the final step of
the SQI calculation was designed to be signal-dependent.
Two configurations were considered:
e iPPGgeen, iPPGpyeand iPPGgrp: For each labeled can-
didate, the SQI is set to zero for the next five seconds.
o iPPGpps, iIPPGgsr: As shown in [8], these signals are
relatively resistant against disturbances. Our observations
showed that bad-quality regions were associated with lo-
cal amplitude increases of these iPPG signals. For ev-
ery labeled candidate, the presence of such an increase is
checked using the following rule. The amplitude before
the labeled candidate is first computed as: amppefore =
maz{x[n —win],...,z[n]} — min{z[n — win], ..., z[n]}
with win = 20 samples and z, the iPPG signal of inter-
est. After 10 samples, this amplitude is compared with
the current amplitude, computed in the same way (using a
causal window of 20 samples). If the ratio ampeyrrent /
ampype fore 15 larger than 1.6 (empirically selected thresh-
old), the SQI is set to zero for the current sample.
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Figure 2. Example illustrating the time evolution of the DI
quantity for a segment of a sequence taken in the motion
subset.

Heart rate estimation: Instantaneous frequency estima-
tion was performed using a modified version of the multi-
signal adaptive frequency tracking algorithm described in
[13], which is an extension of the algorithm introduced
in [14]. This algorithm is based on a time-varying band-
pass filter, constantly updated to track the instantaneous
frequency of the input signal. The adaptive mechanism,
derived from the oscillator equation, is designed to maxi-
mize the oscillatory behavior of the signal. The resulting
cost function is used to update the central frequency of the
filter at each time step, such that it tracks the main fre-
quency of the signal. In the multi-signal case, the same
band-pass filter is used for the M input signals and its cen-
tral frequency is updated to follow their common instanta-
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neous frequency. Individual frequency estimates are com-
puted and finally combined into a global frequency esti-
mate. As described in [13], three parameters can be se-
lected in the multi-signal extended OSC-MSE algorithm:
B (0 < B < 1), which is related to filter bandwidth, ¢
(0 < § < 1), a forgetting factor controlling the conver-
gence rate and A (0 < A < 1), related to the weights. In
the present study, a modification was introduced to make
the forgetting factors (4 and \) time-varying and signal-
dependent. Specifically:

1, if SQIL,[n]=0
0.95, otherwise

Om[n], Am[n] = { (2

with m (0 < m < M). This additional mechanism makes
it possible to minimize the contribution of a bad-quality
signal in the filter central frequency update mechanism. If
all the SQI,,,[n] are equal to zero at a given time, the corre-
sponding frequency estimate is not taken into account and
labeled as not reliable. All the computed iPPG signals,
as well as their smoothed versions (moving average using
L=3 and 5 samples), were provided as inputs. It is impor-
tant to mention that the frequency tracking scheme used is
not affected by phase differences between the inputs.

Performance measurement: In order to investigate the
potential benefits of the proposed SQI, HR was estimated
with and without SQI. As for the ground-truth, HR es-
timates were averaged on 4-second windows (3-second
overlap). The accuracy of the estimated HR was quan-
tified with the average absolute error (AAE), computed
between the true and the estimated HR values. A Bland-
Altman analysis was also performed to compute the limits
of agreement (LOA) [ —1.960, n+1.960] to contain 95%
of the differences. The percentage of removed data points,
considered as not trustworthy (i.e. when all the SQI,,[n]
were equal to zero) is also reported.

3. Results

The overall results for the two data subsets are shown
in Table 1. The performance metrics are reported for both
real-time setting and for the aligned HR series, for which
the averaged estimation delay of 4 seconds was compen-
sated. The individual AAE values are plotted in Figure 4.
For the motion subset, using the forehead ROI, the error
was reduced by using the SQI for all the sequences and an
average error reduction of 42% was achieved. A fraction
of 24% of data was considered as not reliable. When the
entire face was used as ROI, the error was reduced for 8
sequences by using the SQI and an average error reduction
of 45% was achieved, with 13% of data considered as not
reliable. Figure 3 is an example of the time evolution of
the proposed SQI for a data segment taken in the motion

subset, for the iPPGggr signal.
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Figure 3. Example of the computed SQI for a segment of
a sequence taken in the motion subset (forehead ROI). The
ECG is also displayed as visual reference.
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Figure 4. Individual AAE values and percentages of data
considered as not reliable.

4. Discussion

The accuracy of HR estimation was considerably in-

creased by the addition of the SQI for the motion subset,
while the results for the static subset remained almost un-
changed. This can be explained by the small amount of
subject movements in these videos. The overall error of
about five bpm for the motion subset is encouraging given
the challenging nature of this dataset.
Regarding the computation of the SQI, it should be men-
tioned that SQI metrics have been proposed already in the
context of traditional PPG signals. Li et al. [15] proposed
an SQI based on dynamic time warping for pulsatile sig-
nals (PPG and ABP). Unfortunately, it seems difficult to
adapt this approach to iPPG signals, because morphology
of the latter is very variable. We believe that the proposed
method based on the DI value has some strengths. First,
it only requires the pixel values at the current frame and
at the frame [n-1] and is very simple to compute. Second,
this quantity raises with all kinds of disturbances that are
likely to deteriorate the quality of the iPPG signals. For
example, the time evolution of the position of the tracked
ROI could have been used instead. However, sudden illu-
mination changes would not be detected. Finally, the fact
that it led to similar results for the two types of ROl is also
a good point.
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Table 1. Overall results.

Static subset (forehead ROI) | Motion subset (forehead ROI) Motion subset (full face)
Original scheme ~ SQI-based | Original scheme  SQI-based | Original scheme  SQI-based
Real-time { mean AAE [bpm] 3.28 £0.86 327+£092 | 1646+ 1404  6.74 £2.77 9.80 £4.23 5.32+£4.94
LOA 95% [bpm] [-8.6210.05]  [-8.6410.00] | [-27.79 32.14] [-16.06 19.26] | [-20.1629.35] [-14.31 19.51]
Aligned { mean AAE [bpm] 1.92 +0.89 1.89 +0.93 11.57 £ 6.21 6.21 +2.55 9.85 +£4.32 472 £5.27
LOA 95% [bpm] [-5.757.08] [-5.68 6.95] | [-24.7528.36] [-14.9318.41] | [-20.4129.70] [-13.9319.24]
Percentage removed 0 0.01 0 23.65 0 13.30

In addition to the proposed SQI, we introduced in this
study a complete HR estimation scheme taking into ac-
count signal quality and integrating different state-of-the-
art methods. This approach improves both the robustness
of HR estimation and the fraction of usable data.

The lack of labels for waveform quality was a limitation
of this study. For future work, it would be interesting to
test this SQI on videos with subjects performing smoother
movements, in time-varying lighting conditions.

5. Conclusion

An iPPG-SQI was presented in this study, as a tool to
improve the reliability of iPPG-based HR monitoring ap-
plications. The computation of this SQI is causal, and thus
integrable in real-time HR monitoring application based
on iPPG. We believe that the importance of quality mea-
sures for biomedical signals becomes even more impor-
tant nowadays with the introduction of new cardiovascu-
lar monitoring tools, that are usually minimally invasive
or contactless, and thus resulting in signals that are more
prone to artifacts.
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