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Abstract 

Sauna sessions and winter swimming are traditional 
and popular recreational activities in certain countries. 
Their positive effects on health and relaxation, both as 
separate and combined activities, are commonly 
reported. However, systematic studies of these effects are 
relatively scarce, especially regarding the nonlinear 
analysis of the physiological measurements of the heart 
activity. 

We performed Multi-Scale Entropy (MSE) and 
Detrended Fluctuation (DFA) analyses on the inter-beat 
time series (about 72 h long) of 21 healthy volunteers 
studied in three distinct contexts: winter swimming 
combined with sauna bathing (W), sauna bathing alone 
(S), and control (C) with no related activities. 

We confirmed that the scaling exponents (DFA) and 
complexity indices (determined from MSE) stay within the 
variation observed for healthy individuals as compared to 
public data sets. Next, we showed that S and W 
interventions have uncorrelated effects on the whole time 
series complexity in each individual. Additionally, the 
long-range scaling properties of S and W groups are not 
correlated as determined by DFA. Thus, we speculate 
that winter swimming combined with sauna bathing and 
sauna bathing alone might have different physiological 
responses. 

 
 

1. Introduction 

Sauna bathing, alone or combined with winter 
swimming, is a traditional and popular recreational 
activity in Northern countries, especially Finland. Sauna 
sessions and winter swimming are believed to relieve the 
work-related stress, to refresh mind, and to improve 
quality of sleep [1, 2]. 

Previous studies of these activities focused on time and 
frequency domain characteristics of the inter-beat time 
series [3]. The aim of this study is to analyze nonlinear 
scaling properties of the inter-beat dynamics of the heart 

during sauna and winter swimming interventions.  
 

2. Data and methods 

Data were collected from 27 volunteers (16 females, 
11 males) with the following criteria for each of them: 

- the subject is an experienced winter swimmer, 
regularly combining sauna bathing and winter swimming; 

- the subject’s age is between 35 to 55 years; 
- the subject has a normal day time work; 
- the subject has normal health status and no regular 

medications; 
- the subject has no sleep disorders, nor severe snoring; 
- the subject has a normal body-mass index (BMI) and 

regular living habits. 
The measurement protocol consisted of three 

independent trials for each of the subject: sauna bathing 
(S), ice-cold water immersion/winter swimming 
combined with sauna (W), and control trial without any 
intervention (C). Each trial took place on weekdays and 
lasted for three consecutive days: the heart rate 
measurements started in the morning of the first day and 
stopped in the morning of the fourth day. During 
intervention trials S and W, only the first two days 
included the corresponding exposure (also subjects were 
instructed to take the exposures S/W after work in the 
evening), the third day was left without the exposure. In 
the reference trial subjects were forbidden to take sauna 
bathing or swim in ice-cold water. 

Heart rate was recorded continuously during all three 
days for each trial using an ambulatory recorder belt 
(Suunto Memory Belt, Suunto, Vantaa, Finland, 
www.suunto.com). In this study we use consecutive RR 
(inter-beat) intervals of the ECG recordings as these 
reveal long-range scaling properties [4] that were shown 
using nonlinear techniques from statistical physics. The 
inter-beat time series were analyzed using two methods: 
Multi-Scale Entropy (MSE) [5, 6] and Detrended 
Fluctuation (DFA) [4, 7] analyses. 

The MSE analysis allows for quantifying a complexity 
of a time series by calculating entropy (here, Sample 
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Entropy [8, 9]) over different scales of the time series. 
The Sample Entropy (SampEn) is a regularity statistic 
quantifying how regular is the pattern of a time series. 
The scale of a time series is determined by the coarse-
graining procedure: the data points from the original time 
series are averaged within non-overlapping windows of 
increasing length with scale being the length of the 
windows (see [5, 6] for details). 

It was proposed to use sum of SampEn values over a 
range of scales as a complexity index CI [10, 11]. CI is an 
integrated measure, accounting for variation in the time 
series at multiple scales. In this work we use the first 10 
scales of a time series to calculate CI. 

The time series were preprocessed to remove artifact 
regions. Only 21 subjects with all three trials were 
considered for the analysis. In permutation tests, 105 
permutations were used to estimate p-values. 
 
3. Results 

A typical three-day time series of the RR intervals is 
shown in Fig. 1. Note the highly regular pattern for the W 
intervention (Fig. 1C): the valleys of low RR correspond 
to the high frequency activity of the heart during sauna 
sessions, whereas the peaks of high RR correspond to 
staying in cold open air (90-95% of the time) and in ice-
cold water during winter swimming sessions. This fact 
prompts us to question whether such patterns have an 
effect on the properties of the whole time series. 

 

 
Figure 1. A typical time series of RR intervals (W 

trial). (A) full time series approximately 72 h long; (B) a 
short fragment of the full series; (C) a close-up 
corresponding to the sauna bathing and winter swimming 
activity. 
 
3.1. Multi-Scale Entropy analysis 

After removing all artifacts we have performed the 
MSE analysis over full time series. The results are shown 
in Fig. 2. From the figure one can see that there is no 
significant variation in the form of the MSE curves and in 
the span of SampEn values across the three trials. We 

have verified using publicly available data (PhysioNet 
[12]) that healthy individuals have similar shape of the 
curves (Fig. 2A). 

 
Figure 2: sample entropy (SampEn) values over the first 
10 scales of the original time series. (A) control, C; (B) 
winter swimming and sauna, W; (C) sauna bathing, S. 
The solid black line denotes the median profile from all 
the curves. The dash black line denotes a median MSE 
profile from 5 time series (approximately 24 h long) for 
healthy individuals from public data base PhysioNet [12]. 
Scaling of the axes is the same for all three plots. 

 
The CI distributions do not reveal overall differences 

(Table 1). However, if we perform statistical tests 
between CI’s of the three groups we find significant 
difference between C and S groups (p = 0.031, Table 2). 

 
Table 1. Distribution statistics of CI’s for all groups. 

 
Statistics C group S group W group 
Mean  7.76 6.92 7.50 
Median 7.58 7.28 7.40 
Stand. dev. 1.17 1.33 1.81 
Max 11.03 9.34 10.92 
Min 6.09 2.92 2.99 

 
Table 2. Statistical comparison of CI’s between the three 
trials. Paired t-test was used. * - significant difference 
with the false positive rate 0.05. 

 
Statistics C – W  C – S W – S  
t-statistic  0.708 2.321 1.096 
p value 0.487 0.031* 0.286 

 
Finally, to appreciate the by-person change in 

complexities between trials we present the following 
graph. We construct the difference measure between CI’s, 
namely, δCXY = CI(X) – CI(Y), and plot δCXY vs. δCXZ. 
The graph shows the complexity change when passing 
from a trial X to a trial Y as a function of the change 
between the trial X and a third trial Z. 

We observe a strong linear relationship between the 
δCWC and δCWS (Pearson’s ρ = 0.73, two-sided 
permutation test p = 0.0004) and between δCSC and 
δCSW(ρ = 0.71, p = 0.0004) in Fig 3 A and B, 
respectively. The W-to-C change in CI is highly 
correlated with the W-to-S change for a subject, which 
indicates that C and S trials cause a comparable (with a 
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factor of ρ on average) complexity change effect when 
applied to the W trial (Fig. 3A). Similarly, the W and C 
trials cause a correlated effect when applied to the S trial 
on per-subject basis (Fig. 3B). However, we can see that 
the W and S interventions are not correlated (ρ = -0.03, p 
= 0.8601) for each subject when applied to the C trial  
(Fig. 3C). In other words, winter swimming combined 
with sauna bathing and sauna bathing alone have 
unrelated complexity effects for each individual. 

 
Figure 3: complexity difference plot. Subjects with 

more than 40% of artifact recordings in at least one of the 
three trials are shown in gray. Pearson correlation 
coefficients between data in X- and Y-axis: (A) ρ = 0.73 
p = 0.0004; (B) ρ = 0.71, p = 0.0004; (C) ρ = -0.03, p = 
0.8601. 

 
If we remove subjects with high percentage (>40%) of 

artifacts (gray in Fig. 3), the correlation coefficients 
become: ρ = 0.83 (p = 0.0005), ρ = 0.80 (p = 10-5), ρ =  
-0.34 (p=0.1855) for the cases A, B, and C in Fig. 3, 
respectively, which indicates that the effects persist. 

If we divide the plane by the coordinate axes (dashed 
gray lines), we also note that the southeast quarter in 
Fig. 3B is less populated (1 point) than others. This 
corresponds to a less number of individuals for whom the 
following inequality holds CI(W) > CI(S) > CI(C) (p = 
0.019). 

 

3.2. Detrended Fluctuation analysis 

Additionally, we have estimated scaling exponents by 
means of DFA [7] on the whole time series in order to 
determine whether the scaling properties of the inter-beat 
time series break for the given interventions. Namely, we 
assessed the scaling exponents α1 (in window size s = 
4,…,16), α2 (s = 32,…,N/4, where N is the total length of 
a time series), α3 (s = 16,…,128). Note that α1 
corresponds to short-range correlations, whereas α2 and α3 
correspond to long-range correlations. 

As with MSE, we observe the exponents’ values 
within ranges characterizing the healthy heart dynamics. 
Nevertheless, we found strong correlations between α1 
values for all experimental groups. Namely, Pearson’s 
ρCW = 0.86 for α1 exponents between C and W groups, 
similarly ρCS = 0.90 and ρSW = 0.86 (two-sided 
permutation test p-value for Pearson’s ρ in all three cases 
was < 10-5). This suggests the short-range correlations of 
the inter-beat dynamics are not affected by any of the 
interventions. However, long-range correlations break 
between the trials. Thus, for α2 exponents: ρCW = 0.33 (p = 
0.15), ρCS = 0.48 (p = 0.03), ρSW = 0.30 (p = 0.18). 
Noteworthy, the Pearson correlation between α2 values 
for S and W groups also breaks suggesting the 
interventions have different long-range effects on the 
inter-beat dynamics.  

The scaling exponent α3 on the window span of up to 
128 beats demonstrates strong correlation between the 
trials, indicating that this range is not sufficient to break 
the inter-beat correlations (ρCW = 0.92, ρCS = 0.81, ρSW = 
0.90, p < 10-5 for all). 

 
4. Discussion 

We have conducted the analysis of the whole time 
series from 21 individuals whose heart activity was 
recorded during winter swimming and sauna bathing 
sessions. In this work, we have focused on the nonlinear 
analysis of time series, namely, Multi-Scale Entropy and 
Detrended Fluctuation analyses. 

Although sauna bathing and winter-swimming RR 
time series exhibit a specific pattern (Fig. 1C), the whole 
time series analysis showed that the variation stays within 
physiological limits observed in healthy individuals. 

However, in each particular individual winter 
swimming combined with sauna (W) and sauna bathing 
alone (S) have uncorrelated effects on the complexity of 
the whole time series as determined by the MSE analysis. 
This might indicate separate physiological mechanisms 
involved in the heart rate control during these two 
interventions. This result seems to be particular 
interesting given the two interventions have a common 
activity, that is sauna bathing, and given that we have not 
found any correlation with other characteristics of the 
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subjects, like gender, age, BMI, health index, stress and 
relaxation levels etc. 

Finally, we have found that the long-range correlations 
of the heart inter-beat dynamics break between the 
experimental groups as determined by the DFA scaling 
exponents. Short-range correlations do not break 
indicating that the specific winter swimming and sauna 
pattern of the heart’s activity (Fig. 1C) cannot interfere 
the short scale properties of the inter-beat dynamics. 
However, on the large scale the activity pattern has a 
direct effect on the fluctuation levels defined in DFA [4, 
7] and, hence, on the scaling exponents of the time series. 
Moreover, the large-scale properties in S and W groups 
are not correlated; suggesting, as in the case of the MSE 
results, that sauna activity alone and sauna combined with 
winter swimming have different physiological effects on 
the heart rate dynamics. 
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