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Abstract 

The aim of the 2017 PhysioNet/CinC Challenge [1] is 
to classify short ECG signals (between 30 seconds and 60 
seconds length), as Normal sinus rhythm (N), Atrial 
Fibrillation (AF), an alternative rhythm (O), or as too 
noisy to be classified. 

Convolutional Neural Networks (CNN) and Recurrent 
Neural Networks (RNN) as classifiers have recently shown 
improved performances compared to methods established 
in various sound recognition tasks [2] and interesting 
result in tasks such as the 2016 Physionet Challenge for 
the classification of heart sound [3]. 

Our approach is based on a convolutional recurrent 
neural network (CRNN), involving two independent CNNs, 
to extract relevant patterns, one from the ECG and the 
other from the heart rate, which are then merged into a 
RNN accounting for the sequence of the extracted patterns. 
The final decision is then evaluated through a Support 
Vector Machine (SVM).  

 
 

1. Introduction 

The main objective of the 2017 PhysioNet/CinC is to 
classify cardiac signals in four different classes: N (Normal 
sinus rhythm), AF (Atrial Fibrillation), O (an alternative 
rhythm), or “too noisy” (to be recognized). The data 
provided by the challenge are electrocardiograms (ECG). 
An electrocardiogram shows the heart's electrical activity. 
The spikes and dips are called waves. It allows to highlight 
various cardiac abnormalities and has an important place 
in diagnostic tests in cardiology. Electrocardiogram 
immediately provides heart health information. When 
reading an electrocardiogram, five characteristic waves 
can be observed: P, Q, R, S and T. The P wave represents 
atrial depolarization, the QRS complex corresponds to the 
depolarization and contraction of the ventricles, right and 
left and the T wave corresponds to the repolarization phase 
of the two ventricles [6, 7, 8, 9].  

Convolutional Neural Networks (CNN) and Recurrent 
Neural Networks (RNN) as classifiers have recently shown 
improved performances compared to methods established 

in various sound recognition tasks [2] and interesting result 
in tasks such as the 2016 Physionet Challenge for the 
classification of heart sound [3]. 

 
 

2. Data preprocessing 

To train our model we have 8528 ECGs at our disposal. 
Thanks to the Matlab code provided by the challenge [4], 
we have generated features useful for the processing of our 
data such as the position of the R peaks in the signal and 
the heart rate for each signal.  

Each signal has been divided into several windows 
containing the most important elements of an 
electrocardiogram, which are P, Q, R, S and T waves. To 
create these windows, we have considered as starting 
(green points in the Figure 1) and ending (black points in 
the Figure 1) points of the windows, the middle of each R-
R interval in the signal. The R-R interval is what connects 
two consecutive R waves (red points in Figure 1). If the 
distance between two R peaks is too large, a threshold has 
been set at about 0.5 milliseconds before (fore the starting 
point) and after (for the ending point) each R peak. 

 

 
 

Figure 1. A portion of an AF signal with the R peaks, the 
starting points of each window in green and the ending 
points in black. 
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Figure 2. Windows extract from the AF signal. 
 
We rescale the heart rate between [0, 1]. 
 
 

3. Model 

For reducing the problem of multiclass classification we 
have decided to implement a strategy One-Vs-All. We 
consider the problem as a multiple binary classification 
problem. 

We have implemented a hierarchical model consisting 
of three CRNNs. The first model classifies the AF class 
against the rest of the classes (i.e. N, O and Noisy). Then 
we discard the AF samples from the dataset and we train a 
second model which classifies the N class against the rest. 
Here the remaining samples are from O and Noisy classes. 
We repeat a third time for the last model we discard the 
samples of the class N and we train the last model which 
classifies the O class against the Noisy class. 

To know the class of a signal it will be necessary to start 
by making a prediction on the first model. If the model 
predicts that the signal belongs to the class AF we stop 
here. Otherwise we return the signal to the second model. 
If the model predicts that the signal belongs to the N class, 
we stop at this level. Or it will be necessary to make a last 
prediction on the last model to know if the signal belongs 
to the O class or to the Noisy class. 

 
 

3.1 Architecture 

We describe here the structure of the CRNN. The model 
has two inputs: one for the ECG and the other for the heart 
rate. Each input is then represented by high-level features 
given by the output of a CNN. These high-level features 
are extracted separately, then concatenated and input into 
a RNN. Feature extraction is performed by 1-dimensional 
convolution layers leading to a 1-dimensional high-level 

feature vector output which is then seen as a sequence of 
feature values and sent to a recurrent layer to learn the 
longer-term temporal dependencies between relevant 
patterns present in the features. 

 
 

 
Layers Parameters Activ. 
Convolution 1D         32  ReLU 
Max-Pooling 1D 
Dropout 

        2 
      0.05 

 

Convolution 1D        64 ReLU 
Max-Pooling 
Dropout                                      

        2 
       0.1 

 

Convolution 1D       128 ReLU 
Max-Pooling 1D 
Dropout 

        2 
      0.15 

 

Merge / Concatenation    
Masking Layer   
LSTM 
LSTM 
Dense Layer 

       64 
       64 
        2 

Tanh 
Tanh 
Softmax 

 
Table 1. Convolutional Recurrent Neural Network layers 
and parameters. 
 

 
The ECG and the heart rate data have sequences of 

different lengths. Before being input to our architecture, 
the sequences are zero padded. This leads to use a Masking 
Layer in the network in order to discard dimensions of the 
output feature vector resulting from zero padded processed 
values that we do not want the recurrent network to take 
into account as sequence values.  

First the input is sent to three 1D convolutional layers. 
Between each convolutional layer we add max-pooling 
layer which extracts the maximum value of the filters and 
thus provide the most informative features while avoiding 
redundancy and reducing computational cost thanks to data 
reduction. In addition to max-pooling layers, dropout have 
been added to reduce overfitting. For the convolution we 
used kernels of size 3. 

For the next step, we use RNN, more precisely Long 
Short-Term Memory (LSTM) [5]. Unlike a conventional 
RNN the LSTM solve two problems: LSTM can handle 
long-term dependencies and solve vanishing gradient 
issue. We have 2 consecutive LSTM layers in order to 
increase the length of time dependencies. 

The last layers here are a dense layer with two outputs 
followed by a softmax layer. The two outputs correspond 
to the binary classification of the One-Vs-All strategy for 
each class. 

All these layers are detailed in the Table 1 above and a 
diagram presents their organization in Figure 3 below. 
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Figure 3. Our CRNN Model. The bold boxes are 

repeated processes. 
 

3.2. Training 

For training our models we split our data into training 
and validation set. We use 85 % for training and 15 % for 
validation. The validation is composed of 15% of each 
class.  

Convolutional and LSTM layers are using Glorot 
uniform weight initialization [10]. The dense layer is using 
He normal weight initialisation [11]. During training we 
used cross entropy as loss function and Adam as optimizer 
[12] with a fixed learning rate of 10-4. Our architecture has 
been implemented using Keras and Tensorflow as 
backend.  

 
3.3. Final classification 

Deep learning is only a data representation methodology 
on which decision algorithms can be applied. Here we have 
decided to use a SVM, which is known to be a powerful 
binary classifier. We have recovered the features generated 
by the last layer of LSTM and we have trained the SVM 
on these new representations.  
 

 
4. Results 

Here are the results of the three models for the different 
classes, for the CRNN and CRNN-SVM. We use 85% of 
the data for training and 15% for validation. 

 
 

Table 2. AF vs All model train result. 
  

AF vs All Sensitivity Specificity Score 
CRNN 0.825 0.987 0.906 
CRNN-SVM 0.817 0.988 0.902 

 
Table 3.  N vs All model train result. 
  

N vs All Sensitivity Specificity Score 
CRNN 0.928 0.917 0.922 
CRNN-SVM 0.947 0.886 0.916 

 
Table 4.  O vs Noisy model train result. 
  

O vs Noisy Sensitivity Specificity Score 
CRNN 0.979 0.796 0.887 
CRNN-SVM 0.994 0.771 0.882 

 
 
Table 5. AF vs All model validation result. 
  

AF vs All Sensitivity Specificity Score 
CRNN 0.727 0.986 0.856 
CRNN-SVM 0.723 0.987 0.855 

 
Table 6.  N vs All model validation result. 
  

N vs All Sensitivity Specificity Score 
CRNN 0.879 0.847 0.863 
CRNN-SVM 0.907 0.801 0.854 

 
Table 7.  Other vs Noisy model validation result. 
  

O vs Noisy Sensitivity Specificity Score 
CRNN 0.969 0.666 0.817 
CRNN-SVM 0.983 0.672 0.827 

 
The non-definitive result obtained with the CRNN on 

the validation dataset is 0.77. With the CRNN-SVM the 
result obtained is also 0.77. However, if we obtain the same 
results respectively 0.78 for AF and 0.89 for the Normal 
classes, the results on the Other class vary. With the CRNN 
we get 0.63 while with the CRNN-SVM the score for the 
Other class is 0.65. 
 
 
5. Discussion 

We have presented our deep hierarchical model for the 
Physionet 2017 Challenge. The performance differs 
somewhat between our results during the training of our 

Dense	Layer	
Softmax	
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model and the validation on unseen data. Notably for the 
class Other where we noticed that it is mistaken for the 
class AF and even more for the class Normal. Using the 
SVM for the final decision allows us to improve the results 
of the third model trained on the Other and Noisy classes. 
For the first two models, the results remain similar with a 
softmax layer or with an additional “SVM Layer”. The 
network struggles to generalize the Other class maybe 
because it gathers many different heart diseases, so the 
variability intra-class is too impacting. The Normal class, 
being the most represented among the samples, offers the 
best results. The final score on the hidden challenge dataset 
is 0.77, like previously on the subset. The question arises 
then if, with a larger dataset, the results would be better? 
This would imply a wider neural network. In addition, the 
processing of mirrored electrocardiograms has not been 
done correctly, this would improve the results. 
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