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Abstract 

Detection of atrial fibrillation (AF) from 
electrocardiogram (ECG) recordings is one of the 
prevailing challenges in the field of cardiac computing. 
The task of the PhysioNet/Computing in Cardiology 2017 
challenge is to distinguish the AF rhythms from non-AF 
rhythms using a short single lead ECG recording. In this 
study, we analyzed 62 time and frequency-domain, linear, 
and nonlinear features to discriminate four classes, viz., 
normal sinus rhythm, AF, noisy, or other rhythm. The 
feature space dimension was reduced to 37 using a Genetic 
Algorithm based feature selection. We trained a random 
forest classifier on the given 8,528 training dataset and 
obtained a ten-fold cross validation classification 
accuracy of 82.7%. On the test dataset, we obtained an F1-
score of 0.91, 0.74, and 0.70 for NSR, AF, and other 
rhythms, respectively. Results suggest that with the 
proposed model it is possible to classify cardiac 
abnormalities from a single lead ECG even when the 
recordings are of short duration.   
 
1. Introduction 

Arrhythmias are described as abnormalities of the 
heart, such as slow, fast, or irregular rhythm. Arrhythmias 
are caused by problems with the electrical activities in the 
heart that typically maintain a steady heartbeat. Although 
there are several types of arrhythmias, AF is the most 
common type of serious arrhythmia, affecting millions of 
people worldwide [1-3]. Identification of the type of 
arrhythmia is necessary for an effective treatment. 

 The electrocardiogram (ECG) is the most commonly 
used diagnostic tool in identifying abnormalities in heart 
rhythms. Typically, an expert cardiologist can identify 
abnormal heart activities in ECG. However, in some cases, 
distinguishing among different types of arrhythmia is 
challenging, especially with continuous data collection and 
in the presence of signal noise. To mitigate the cognitive 
challenges of computing multiple aspects of the ECG, 
statistics and machine learning based decision support 
tools can assist cardiologist in their decision-making.  

In this paper, we developed a model using features 
extracted from various techniques including Sample 
Entropy (SampEn), Probabilistic Symbolic Pattern 
Recognition (PSPR), and multiwavelet decomposition to 
classify the ECGs as 1) normal sinus rhythm (NSR), 2) AF, 
3) Other rhythm or 4) Too noisy to classify. All non-AF 
abnormal rhythms were considered in the Other rhythm 
category. We propose to use a combination of linear, 
nonlinear, time and frequency domain features to boost the 
classification performance of ECG rhythm detection. 

The paper is organized as follows. Section 2 provides 
an insight of the dataset and pre-processing steps used in 
the analysis. In Section 3, we describe the feature 
extraction and feature selection techniques used along with 
the classifier. The key results are discussed in Section 4, 
followed by the concluding remarks. 

 
2. Material and Methods 

This section describes the dataset used in this study and 
gives the background of some of the concepts used in the 
classification algorithm. 

  
2.1. Dataset  

A total of 8,528 single lead ECG recordings were 
provided in the training dataset of the PhysioNet/ 
Computing in Cardiology Challenge 2017 [4-5]. ECG 
recordings, collected using an AliveCor device, were 
sampled at 300 Hz and had a minimum, maximum, and 
mean duration of 9.0 s, 61.0 s, and 32.5 s, respectively.  

In the training dataset, there were 5,050 NSR, 738 AF, 
2,456 Other, and 284 Noisy ECG recordings. A hidden test 
dataset containing 3,658 ECG recordings was used to 
evaluate the performance of the proposed classification 
model. Labels for each class were provided by AliveCor 
and later revised by the challenge organizers.  

  
2.2. Pre-processing of ECG  

All ECG recordings were band-pass filtered between 5-
26 Hz to remove baseline wandering, power-line 
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interference, and to maximize the QRS energy. ECG 
recordings were also down-sampled to 200 Hz to decrease 
the computation time in feature extraction. We developed 
a protocol to statistically identify and exclude any 
abnormal spikes in the recordings caused by electrode 
disconnect, physiological artifacts, etc. We also developed 
a method in MATLAB to identify and correct inverted 
QRS complexes in ECG recordings. 

 
2.3. QRS complex detection 

The beat-to-beat intervals (RR) extracted from the QRS 
complex provide valuable information on the cardiac-
autonomic function in healthy and disease states. We used 
the Pan-Tompkins [6] algorithm to extract RR intervals 
from the ECG recordings sampled at 200 Hz. The 
algorithm works well for a clean ECG; however, the 
algorithm misses many R peaks with the presence of noise 
and inverted QRS. Therefore, we first identified and 
corrected the inverted QRS complexes and then ran the 
Pan-Tompkins algorithm yielding drastically improved 
accuracy in QRS detection (refer Fig. 1).  

 
 

 
 
Figure 1. QRS complexes identified on a representative 
ECG recording without and with lead reversal correction.  

 
3. Procedure 

In this section, we discuss the process of feature 
extraction from ECG recordings. We also briefly explain 
our feature selection technique based on a genetic 
algorithm (GA), and the classifier used for distinguishing 
different rhythms.  

 
3.1. Feature extraction  

  To effectively extract the underlying information 
present in ECG recordings, we explored possible linear 
measures which are robust to noise. We implemented 
PSPR, a linear feature extraction approach, to discretize 
and model symbolic pattern transitions in ECG recordings 
[7-9]. We used five symbols {a, b, c, d, e} to discretize 

ECG; then we used probability theory to learn dynamics in 
the ECG morphology. Our previous study shows that 
PSPR performs even better if ECG recordings are sampled 
at a low frequency [10]. Therefore, in this study, we down-
sampled ECG recordings at 8 Hz to extract the PSPR 
features. Four PSPR features were calculated by 
comparing the similarity of the discretized series with a 
reference AF episode database of 25 ECG recordings [11]  
and 100 NSR ECG recordings of the training dataset.  

    To gain more information from the nonstationary ECG 
recordings, we extracted five features with wavelet 
decomposition. Based on our preliminary observations, we 
decided to apply the Symlet wavelet and decomposed the 
recordings up to level 5. Features obtained from the 
variance of three detail coefficients (cd3, cd4, cd5) and 
variance of the autocorrelation of (cd1, cd2) were found to 
provide significant discriminative information and hence 
were used in the feature space. 
 A nonlinear metric like SampEn conveys information 
pertaining to predictability and chaotic behavior of a signal 
[12-13]. Therefore, to gauge the complex dynamics of 
ECG recordings, we computed SampEn values. Because 
ECG signals are intrinsically non-stationary, features 
extracted from the entire series may be locally unsuitable. 
Hence, we segmented each ECG recording of length L into 
epochs of one second and computed SampEn for each 
epoch sequentially using equation 1. This resulted in 
SampEn series (each of length L-200) for the 
corresponding ECG series. 
 

																						SampEn m, r, N = −ln	[/
0 1

20 1
].                 (1) 

 

where, m=3, is the maximum epoch length to be compared, 
r=0.25, is the tolerance window and N=200, is the length 
of the ECG series. 𝐵5 𝑟  is the probability that two 
sequences will match for m points, whereas 𝐴5 𝑟  is the 
probability that the two sequences will match for m+1 
points. The mean and range of SampEn were used as 
additional features. 
 Furthermore, we evaluated frequency-domain features 
from spectral analysis of ECG recordings. We computed 
the average power in very low frequency (VLF) = 0-0.04 
Hz, low frequency (LF)= 0.04-0.15 Hz, high frequency 
(HF)= 0.15-0.5 Hz, and a ratio of LF to HF. Among these 
features, VLF provided the strongest discriminative power.  
 In addition to the abovementioned features, we also 
evaluated conventional time-domain measures such as 
pNN50 (the percentage of beats having a difference greater 
than 50ms); descriptive metrics such as mean, median, 
kurtosis, standard deviation, range and skewness of 
preprocessed ECG recordings and original, 1st order, and 
2nd order RR interval series. We also used the averages of 
RR intervals falling in the lower 5% and higher 5% tails of 
their frequency distribution. We extracted another set of 
temporal features by performing the Kolmogorov–
Smirnov (KS) test to compare the given RR interval with 
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the reference RR interval database created from 50 
examples from each class. We then computed features 
using the mean p-value comparing AF and Other. 

  In total, we identified 62 different features to fetch 
morphological, temporal, and spectral information from 
ECG recordings. The statistical metrics used are very 
simple, yet they provide vital information for ECG rhythm 
classification. The proposed features in this study are 
computationally inexpensive and therefore, can also be 
utilized for real-time arrhythmia detection. 

 
3.2. GA-based Feature selection 

To enhance the generalizability of the classification 
model, we removed redundant features using a GA-based 
feature dimension reduction approach. The GA is an 
optimization technique to obtain the subset of features that 
maximizes the predictive accuracy. Our algorithm was 
based on Babtunde’s model [14]. A population of 10 
individuals was created and the initial population was 
randomly generated. For every individual in the current 
population, an ensemble of bagged decision trees with 220 
learners was estimated. The resulting random forest was 
then tested with ten-fold cross validation. The fitness 
function of the individual was based on the F1-score for 
NSR, AF, and Other rhythms. Once the fitness of all 
individuals of the current generation was computed, the 
GA generated the next generation. This process was 
iteratively executed for 15 generations.  

3.3. Random Forest classifier 

We implemented a random forest classifier to 
discriminate four classes of ECG rhythms. Individual 
decision trees tend to overfit, so we used bootstrap-
aggregated (bagged) decision trees, aggregating the 
predictions from an ensemble of 220 decision trees.  The 
random forest classifier selects a random subset of features 
to use at each decision split, which helps reduce the 
correlation between decision trees. Further, to avoid 
overfitting of the classification model, we performed ten-
fold cross-validation in which we trained our model on 
nine equal-size subsamples of the training data and tested 
it on one subsample. The reported classification statistics 
in this paper are the average of ten-fold cross validations.  
We also compared the classification results with other 
classifiers (Support vector machine, discriminant analysis, 
decision trees), but the random forest classifier provided 
the best classification accuracy by far. 
 
4. Results  

 This paper addresses a challenging problem of reliably 
detecting abnormal cardiac rhythms from the broad 
taxonomy of rhythms. The training dataset provided 

contained single lead, noisy ECG recordings of very short 
duration. We evaluated different features to characterize 
the behavior of ECG rhythms in both time and frequency 
domains. The hybrid scheme of time, frequency, linear, 
and nonlinear feature extraction techniques improved the 
classification accuracy of ECG recordings contaminated 
with artifacts and noise. 

Our GA-based algorithm selected 37 discernable 
features from the pool of 62 features. The final feature 
matrix with 37 features was used as input to the random 
forest classifier to yield a classification output as: Y=0 
(NSR), Y=1 (AF), Y= 2 (Other), and Y= 4 (Noisy) 
rhythms. Table I depicts the list of features selected in the 
final classification model. For illustration purposes, box 
plots of two features- pNN50 and range of sample entropy 
computed from the training dataset are shown in Fig. 2. As 
depicted in the plot, the mean percentage of beats differing 
by more than 50 ms is low for the case of normal rhythm. 
Also, the mean range of sample entropy is relatively high 
for the noisy rhythms, which suggests the chaotic behavior 
in noisy ECG recordings.  

The objective of this paper was to emphasize the correct 
classification of usable recordings. So, to reduce the 
effective weight assigned to noisy recordings, F1-scores 
were calculated from only the three main classes and the 
noisy class was ignored. The overall F1 score, therefore, 
was computed as: 

 

  Overall F1-score = 	89:;89<;89=
>

   (2) 
 

where F@A = B∗D1EFGHGIJ∗KEFLMM
D1EFGHGIJ;KEFLMM

 is the F1 score of the  
normal rhythm. Likewise, F@N and F@O were calculated for 
AF and Other rhythms, respectively. F1 scores obtained 
from the training and hidden test dataset are recorded in 
Table 2. The results suggest that the classification model 
doesn’t overfit and is generalizable. 

 
Table 1. Summary of final selected features for 
discriminating four ECG rhythms in the model. 

Features used in this study 
Time-domain 
       Descriptive measures of ECG  
       Descriptive measures of RR intervals 
       Descriptive measures of 1st order RR intervals 
       Descriptive measures of 2nd order RR intervals 
       Quantile based on RR intervals 
       KS test based on RR intervals 
       Heart rate variability measures 
Frequency-domain 
       VLF power 
Linear 
   Wavelet coefficients 

      PSPR 
Nonlinear 
       SampEn from one second epoch of ECG  
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Figure 2. Box plot of two representative features used for 
discriminating the four classes of rhythms. 

 
 
Table 2. F1-scores obtained with the proposed 
classification model. 

 
5. Conclusions 

In this study, we extracted and analyzed various 
morphological, time and frequency-domain features to 
characterize changes in ECG recordings. We used the 
PhysioNet 2017 challenge dataset, which contained 8,528 
single lead ECG recordings lasting from 9 to over 60 
seconds. We implemented a GA-based feature selection 
technique which resulted in a reduced feature space of 37 
features to classify different ECG rhythms. Using a 
random forest classifier, we obtained an overall F1-score 
(for NSR, AF and Other rhythms) of 0.79 on the given 
training dataset and 0.78 on the hidden test dataset. Our 
results demonstrate that the efficacy of AF detection can 
be enhanced by using the proposed machine learning 
approach. 
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Rhythm Type 
F1- Score 

Training dataset Test dataset 
Normal 0.89 0.91 
Atrial fibrillation 0.76 0.74 
Other 0.72 0.70 
Average  0.79 0.78 
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