
A Predictive Personalised Model for the Left Atrium

Cesare Corrado1, Steven Williams1, Gernot Planck2, Mark O’Neill1, Steven Niederer1

1 King’s College London, London, United Kingdom
2 Medical University of Graz, Graz, Austria

Abstract

We propose an integrated modelling and clinical pro-
tocol for characterising local tissue properties in the left
atrium and validate the resulting personalised models in
four patient cases. We generate a personalised model from
a set of measured local activation times (LATs) obtained
by pacing the left atrium in the proximity of the coronary
sinus with a programmed pacing protocol. We validate the
model by evaluating the correlation between a set of mea-
sured LATS, obtained by pacing on the high right atrium
and a set numerically computed LATs. We then estimate if
the tissue is capable of sustaining an atrial fibrillation or
a tachycardia by triggering a spiral wave on the computa-
tional model and then analysing the activation frequencies
and the time elapsed until the termination of the aberrant
activation.

1. Introduction

Atrial fibrillation (AF) is an abnormal heart rhythm in
which rapid and uncoordinated electrical activation of the
atria resulting in deterioration of mechanical function. AF
affects almost 2.5 million people in the US, [1] and is
associated with an increased incidence of cardiovascular
disease, stroke and premature death [2]. In drug refrac-
tory patients AF is treated through radio frequency catheter
ablation, however, up to 40% of patients require multi-
ple procedures. Computational models have been identi-
fied as a potential tool to help predict procedure outcomes
and guide ablation targets, [3]; however, their inability to
capture the significant variability in physiology typical of
AF patients limits their potential to make quantitative pre-
dictions of patient response to treatment and thus to in-
form clinical procedures. In this work, we propose a novel
method to generate and validate patient specific models of
the left atria from readily available clinical measurements.
In 4 patients pacing catheters were placed in the coronary
sinus (CS) and the high right atrium (HRA). A 20 electrode
PentaRay catheter was placed in the left atrium recording
10 bipolar electrograms (EGM). Recordings were made at
up to 10 locations in each patient. At each location, an

S1-S2 pacing protocol [4] was applied at both the CS and
HRA catheters to generate two conduction velocity (CV)
restitution curves and an estimate of the effective refrac-
tory period (ERP) for each pair of electrodes. We fitted
a modified Mitchell-Schaeffer (mMS) cardiac cell model
[5] that does not exhibit pacemaker behaviour to the resti-
tution curves recorded during CS pacing with the algo-
rithm developed in [6]. We then interpolated the fitted cell
model parameters across the atrial anatomy derived from
the anatomical mapping system. Finally, we validated the
model by numerically evaluating the predicted LATs ob-
tained during simulated HRA pacing against the clinical
measurements. We then triggered a spiral wave (SW) ac-
tivation pattern on each of the 4 cases with a cross-field
stimulus and recorded the evolution of the transmembrane
potential. We identified cases of atrial fibrillation (1/4),
atrial tachycardia (1/4) and self-terminating aberrant acti-
vations (2/4).

2. Methods

We recorded bipolar EGM during the clinical procedure
and then computed LATs and evaluated the local CV resti-
tutions and the ERP following the procedure summarised
in section 2.1. We constrained the local value of the model
parameters with the procedure described in section 2.2; we
built a computational model with the procedure described
in section 2.3. We finally validated the patient specific
model as described in section 2.4.

2.1. LATs and local CV evaluation

We recorded local activation times by applying an exter-
nal stimulus either in the proximity of CS or on the HRA
and following an S1-S2 pacing protocol (3 S1=470 ms fol-
lowed by a premature pacing S2). We repeated the proto-
col for 28 values of S2, in 2% steps and ranging between
343 and 200 ms. We recorded bipolar EGM on the sur-
face of the left atrium with a multipolar catheter and up to
100 electrode locations per case. For each location that an
EGM was available, we evaluated LATs as the time cor-
responding to the first peak on the EGM trace; for each
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S2 we then linearly interpolated LATs values in the region
covered by the catheter, and then evaluated the local CV
modulus as the inverse of the modulus of the local gradi-
ent of LATs. We evaluated the local ERP as the largest S2
values that did not generate a CV.

2.2. Patient-specific model

We described the local tissue electrophysiology with a
heterogeneous isotropic monodomain approximation [7],
and the mMS ionic model described in [5]; similarly to the
original Mitchell-Schaeffer (MS) model [8], mMS is able
to capture the measured CV and ERP restitution properties
with the smallest numbers of parameters to constrain, it is
proven to be stable to pacemaker behaviour independently
of the choice of the parameter values and it is possible to
analytically estimate the action potential duration (APD)
and the CV restitutions with leading order approximations.
We obtained locally personalised patient-specific models
with the algorithm described in [6], by fitting the measured
local CV restitution and the ERP to a set of pre-computed
restitution curves, obtained from the solution of a 1D com-
putational model on a set of known parameters. To achieve
an optimal range of parameters and improve the sensitivity
with respect to the measured quantities, we built the data
set of pre-computed solutions by sweeping on the param-
eter set defined by the maximum value of APD (APDmax),
the minimum value of the gate variable on the null-cline
(hmin) defined in [5], the maximum CV (CVmax) and the τin
and τopen ionic parameters. We then obtained the original
parameters by inverting the analytical leading order formu-
lations. In this work, we generated a data set of 580,800
samples, evaluated with the parameter values summarised
in Table 1, and keeping the gate potential value fixed and
equal to vgate = 0.1.

Table 1. Parameter values used for building the data set.
Each parameter spans the interval ranging from the min-
imum to the maximum values in increments of the step
value. The set of pre-computed solutions is obtained from
the Cartesian product of all of the parameter value sets.

parameter min max step
CVmax (cm/s) 10 300 10
τin (ms) 0.01 0.31 0.03
hmin [0.01; 0.1] [0.09; 0.5] [0.02; 0.1]
τopen (ms) 65 215 10
APDmax (ms) 120 270 15

2.3. Computational model

On the regions of the atrium where no measurements
were available, we interpolated the parameter values by as-
signing the local values of parameters of the closest mea-
surement point. We generated a computational mesh with
an imposed edge length dx = 215µm on the 2D sur-
face describing the anatomy and obtained from the NavX
electro-anatomical mapping system. We discretized the
computational model in space with linear finite elements;
we adopted a splitting technique [9] for the nonlinear term
describing the ionic current. We adopted a forward-Euler
scheme with a time step dt = 5µs for the ionic model and
a Crank-Nicholson scheme with a time step dt = 50µs for
the diffusive parabolic PDE. Simulations were performed
with the Cardiac Arrhythmias Package (CARP), an elec-
trophysiology solver suitable for hyper-computing [10].

2.4. Validation process

To validate the model we predicted LATs for each value
of S2 recorded during the clinical procedure when pacing
in HRA. In the clinical procedure the left atrium was not
paced directly with the activation wave travelling to the left
atrium. This means that the initial activation site on the
left atrium is not known and the time it took for the acti-
vation wave to reach the left atrium needs to be subtracted
from the clinically recorded LATs. The initial activation
was modelled by applying an external stimulus of inten-
sity Iapp = 4ms−1 and duration tstim = 0.6ms on a
circular region with radius R=1cm. A three step procedure
was used to estimate the centre of the stimulation. First,
we interpolated the CV measured at the largest coupling
interval S2 across the whole left atrium. Secondly, we
considered each point of the mesh obtained from the elec-
troanatomical mapping system as a potential stimulation
site. For each point in the mesh we performed an eikonal
activation simulation, where the activation was initialized
by the candidate point, this gave a set of LATs across the
whole atrium for each point in the mesh. Thirdly, we com-
pared the predicted LATs with the measured LATs to rank
each potential stimulus site and chose the point that pro-
duced the smallest error. To account for the time taken for
the activation wave to reach the left atria from the pacing
electrode we subtracted the mean difference between the
measured and the computed LATs form the clinical LAT’s
prior to comparing them to the model predictions.

We summarised the predictive performance of the com-
putational model through the following 4 quantities: the
linear regression coefficients (m,q) of the regression line
y=mx+q, where points (x,y) corresponding to the mea-
sured and computed LATs for all S2 values; the coefficient
of determination r between measured and computed LATs;
the ratio sl between the two principal components of the
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covariance.
We then triggered a SW activation pattern on each of the

personalised atrial models by applying a cross-field stim-
ulus and measured the activation frequencies and the time
elapsed until the termination of the aberrant activation. We
applied the first stimulus at the time t=0 on the nodes of
the lateral half of the atrium; we applied the second stim-
ulus at time t=S2 on the nodes of the anterior half of the
atrium. We tested several values of S2 and chose those
who triggered a SW lasting for at least 5 seconds.

3. Results

We validated the proposed method on clinical 4 cases
suffering from paroxysmal atrial fibrillation (PAF) who un-
derwent pulmonary veins isolation. Figure 1 shows the
scatter plot of the measured and computed LATs for each
case, while Table 2 summarises the quantities used to mea-
sure the predictive performances of the patient specific
model.

Table 2. Quantities used to measure the predictive perfor-
mances for each clinical case.

Case m q r sl
1 0.85 17.88 0.66 0.19
2 0.84 21.36 0.73 0.15
3 0.68 36.44 0.73 0.15
4 0.99 1.74 0.89 0.04

We then applied a cross-field stimulus on each patient-
specific model with the values of S2 reported in Table 3,
analysed the ability of the model to sustain an aberrant ac-
tivation pattern and determined the spatial distribution of
the activation frequency and the time SW self-terminated.

Table 3. Values of S2 used to trigger AF when applying a
cross-field stimulation.

Case 1 Case 2 Case 3 Case 4
S2 255 ms 280 ms 270 ms 230 ms

Cases 2 and 3 showed self-terminating SW, terminated
after ≈ 16 s and ≈ 3.1 s respectively; Case 1 showed
a self-sustaining AF, driven by a principal frequency of
≈ 5.64 Hz and a secondary frequency of ≈ 9 Hz, char-
acterising a localised stationary rotor. Case 4 showed an
atrial tachycardia (AT), driven by a principal frequency of
≈ 4.8 Hz. Figure 2 shows the spatial distribution of the
activation frequencies after the SW was triggered. All the
4 models showed a dominant frequency between 4 and 6
Hz.

Table 4 summarizes the spatial mean µ of activation fre-
quencies, the spatial standard deviation σ of the activa-
tion frequencies and the time tend elapsed before AF self-
terminated.

Table 4. Spatial distribution of the activation frequencies
during AF and time values tend AF terminated for each of
the 4 cases.

Case 1 Case 2 Case 3 Case 4
µ [Hz] 5.65 4.11 4.38 4.8
σ [Hz] 1.28 0.30 0.32 0.09
tend [s] ∞ 16 3.1 ∞

4. Discussion

Differently from [6], in this work we described the elec-
trophysiology with the mMS model that is stable to pace-
maker behaviour and was proven to furnish equivalent
properties to the standard MS model as far as the SW char-
acterising the AF is concerned, [11]. This choice improves
the time performances of the algorithm since any test on
the pacemaker stability on the set of fitted parameters is
no longer required. Data assimilation techniques based on
Kalman Filtering [12] are computationally expensive since
they require solving direct problems to generate the sen-
sitivity matrix, that is non-sparse and have a size propor-
tional to the number of parameters to constrain. This yields
subdividing the organ into regions characterised by uni-
form properties, limiting the degree of heterogeneity and
thus the resolution. Moreover, the computational demand-
ing related to the involved direct numerical simulations
hampers the application of Kalman Filtering to a clinical
framework. The method proposed in [6] conversely, al-
lows determining the parameters characterising the tissue
properties on a myocardial region that does not depends on
any pre-determined subdivision, resulting in a higher res-
olution of the tissue heterogeneity. The same method nei-
ther requires computing the solution of a direct problem
on an organ scale since it realises on a local fitting proce-
dure against a set of pre-computed solution and thus can
be applied in a clinical time scale. The simulations show
how models could be used to predict if atria are capable of
sustaining an arrhythmia and the type of arrhythmia that
the atria can sustain. The dominant cycle lengths of the
arrhythmias shown in Figure 2 are consistent with those
previously reported in [13]. The models show, specifically
case 1, the potential for electrophysiological heterogeneity
to be important for explaining the underlying drivers of AF.
New catheters and mapping systems that are increasingly
able to capture high density activation maps will provide
further data to develop patient specific models that capture
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Figure 1. Scatter plot of the estimated (y-axis) vs measured (x-axis) LATs; each colour corresponds to a different S2
coupling interval. The linear regression line y=mx+q is plotted in red, the line reference y=x in black. The red ellipse
corresponds to the covariance ellipsoid of x and y.

Figure 2. Space distribution of the activation frequencies for each of the 4 clinical cases

patient electrical heterogeneity.

5. Conclusions

We have developed an integrated modelling and clinical
protocol for characterising the local tissue properties in the
left atrium and validated the resulting personalised models
in four patient cases.
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