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Abstract

Heart Rate Turbulence (HRT) is a physiological phe-
nomenon used as cardiac risk stratification criterion. The
relationship between Heart Rate Variability (HRV) and
HRT has been documented in the literature. However, the
influence of HRV on HRT using individual tachograms has
not been addressed. Our aim was to propose a nonpara-
metric model, based on Boosted Regression Trees (BRT),
of turbulence slope (TS) as a function of coupling interval
(CI), Age, Sex, and HRV time-domain indices. We used
data sets of myocardial infarction (MI) and heart failure
(HF) patients. HRV was assessed on 3-min NN interval
segments just before to individual ventricular premature
complex (VPC) tachograms. We proposed to model TS as
a function HRV indices using BRT, which is an ensemble
approach to build regression models using several small
trees. We segmented data into high risk and low risk ac-
cording to HRT cut-off values of TS. Variables related to
HRV were the most important explaining the HRT in low
risk patients, while in patients with high risk, CI and heart
rate just before the VPC played an important role explain-
ing the HRT response.

1. Introduction

Heart Rate Turbulence (HRT) is the physiological re-
sponse to a spontaneous ventricular premature complex
(VPC). In normal subjects, it consists of an initial accel-
eration and subsequent deceleration of the sinus heart rate.
Heart rate variability (HRV) reflects the regulation of the
heart rate by the autonomic nervous system (ANS). Both,
HRT and HRV, have been shown to be strong risk stratifi-
cation predictors in patients with high-risk of cardiac dis-
ease [1–3].

It has been documented in the literature the influence of
several physiological factors on the HRT [2]. The heart
rate affects the strength of the HRT response, in a way that

HRT is reduced at high heart rate. VPC prematurity also
influences the HRT response. So, in agreement with the
baroreflex source of HRT, the more premature the VPC,
the stronger the HRT response should be [4,5]. It has been
studied in the literature some interaction effect between
sex and age on HRT [6, 7]. Finally, there are evidences
of correlation between HRT and HRV on 24-hour Holters,
since both are under the influence of the ANS [8].

In this work, we propose to use a nonparametric model
of the HRT response for each individual VPC as a func-
tion of different factors, namely, the previous heart rate
just seconds before the VPC (sinus cardiac length, SCL),
the VPC prematurity (coupling interval, CI), sex, age and
HRV time-domain indices, computed on 3-min NN inter-
val segments before the VPC. We propose to model this re-
lationship using boosted regression trees (BRT). The aim is
to model the effect of the HRV on the HRT using 24-hour
Holter from myocardial infarction (MI) and heart failure
(HF) patients.

The structure of the paper is as follows. In Section 2,
HRT and HRV assessment is detailed. In Section 3, BRT
model is explained. In Section 4, data sets are detailed.
In Section 5, results are reported. Finally, in Section 6,
conclusions are presented.

2. Heart rate turbulence and heart rate
variability

HRT is usually assessed by two parameters, Turbulence
Onset (TO) and Turbulence Slope (TS). Both parameters
are usually computed on an averaged VPC tachogram built
using all available individual VPC tachograms from 24-
hour Holters [2]; even though there exist some other ap-
proaches to quantify HRT [9,10]. TO assesses the amount
of sinus acceleration following a VPC, and it is defined
as the percentage difference between the heart rate imme-
diately following the VPC and the heart rate immediately
preceding the VPC. TS represents the rate of sinus decel-
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Figure 1. Summary of results, PDP (one-way and two-way) and feature relative importance of modeling HRT using BRT
for HF low risk (a), HF high risk (b), MI low risk (c), and MI high risk (d).

eration that follows sinus acceleration, and it is defined as
the maximum positive regression slope assessed over any
5 consecutive sinus rhythm RR-intervals within the first 15
sinus rhythm RR-intervals after the VPC [2].

HRV is usually assessed by time-domain indices (statis-
tical and geometrical), which are computed on NN-interval
time series from 24-hour Holter recordings. In this work,
HRV time-domain indices are computing on 3-min seg-
ments before each individual VPC tachogram, only seg-
ments with more than 90% of NN intervals (sinus beats)
were allowed. The aim is to assess the status of the ANS
just before the VPC. HRV is usually assessed on 5-min
segments, however this would lead to very few valid VPC
tachograms. The following statistical time-domain indices
were calculated: AV NN , average of all NN intervals;
SDNN , standard deviation of all NN intervals; rMSSD,
square root of the mean of the sqaures of differences be-
tween adjacent NN intervals; SDSD standard deviation of
differences between adjacent NN intervals. Also, the fol-
lowing geometrical time-domain indices were calculated:
Triangular index, HRV4, total number of all NN inter-
vals divided by the height of the histogram of all NN inter-
vals; TINN , baseline width of the minimum square dif-
ference triangular interpolation of the highest peak of the
histogram of all NN intervals.

3. Boosted tree regression model

We propose to model the HRT, as assessed by a parame-
ter Ts, as a function of the following explanatory variables:
Scl (sinus cardiac length just before de VPC), Ci (cou-
pling interval), Cp (compensatory pause after the VPC),
A (age), S (sex), and HRV time-domain indices, namely
Avnn Sdnn, rmssd, Sdsd, HRV4, Tinn:

T =f(Scl, Ci, Cp, A, S,AvnnSdnn,

rmssd, Sdsd, HRV4, Tinn)
(1)

Function f is learnt using BRT, which is a regression
method that adaptively combines large number of, rela-
tively simple, tree models [11]. This method has been
widely used to generate predictive models in ecological
and biological studies [12]. The BRT estimation, f̂(x),
is obtained sequentially as follows
1. Set f̂(x) = 0 and rn = TS,n for all the n VPC
tachograms available, where rn are the residuals.
2. For b = 1, 2, . . . , B, repeat
(a) Fit a small tree, f̂ b to the training data {xn, rn},

where explicative variables are in vector xn and response
variable is rn.
(b) Update f̂ by adding a shrunken version of the new

small tree f̂ b:
f̂ ← f̂ + λf̂ b (2)
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(c) Update the residuals, rn,

rn ← rn − λf̂ b (3)

3. Finally, output the BRT model:

f̂ =

B∑
b=1

λf̂ b (4)

The main idea behind BRT is to learn slowly. A new
small tree (with few terminal nodes) is fit using the current
residuals and then added to f̂ , so that f̂ is slowly improved
in areas where it does not perform well previously [13].

BRT has three tuning parameters, namely, the number
of trees B, the shrinkage parameter λ that controls the rate
at which BRT learns, and the number of splits in each tree,
which controls the complexity of the boosted ensemble,
it also controls the interaction order between explanatory
variables in the model. Parameters were tuned using 10-
fold cross-validation, which is a usual procedure [13].

Unlike simple regression trees, BRT models can be
more difficult to interpret. However, they can provide with
some summary statistics that allow a better understanding
of the final model and assess the feature importances. The
relative importance and the partial dependence plots, PDP,
are two of such statistics. The relative importance mea-
sures the contribution of each explanatory variable to the
final model [11]. PDP are graphical tools to quantify the
effect of one variable on the response after accounting for
the average effects of the remaining variables in the model.

4. Data sets

We compared the proposed approach on two data sets,
one with HF patients and another with MI patients. HF
data set consists of 42-hour Holter recordings from 66 de-
compensated HF patients (65±14 years, 15 women) with a
left ventricular ejection fraction lower or equal than 35%,
collected during an observational multicenter study (VPre-
dict+) comprising six different spanish hospitals, namely,
Hospital Universitario Virgen de la Arrixaca (Murcia),
Hospital Universitario La Paz (Madrid), Hospital Universi-
tario de Madrid Monteprı́ncipe and Sanchinarro, Hospital
Universitario Virgen de las Nieves (Granada), and Hospi-
tal Clinico Universitario (Valencia). The MI data set con-
sists of 24-hour Holter recordings from 61 post-myocardial
infarction patients (64±9 years, 18 women) who under-
went emergency coronary angiography, and, when appro-
priate, percutaneous infarction revascularization at Univer-
sity Hospital Virgen de la Arrixaca [14].

Both data sets were split into two different subsets,
namely, a low risk subset, which comprised with TS ≥ 2.5
ms/RR and TO ≤ 0, and a high risk subset with TS < 2.5
ms/RR and TO > 0 %. These TS and TO cutoff values are

commonly used in most clinical studies, where TS > 2.5
ms/RR and TO < 0 % are considered as normal, and they
were proposed using data from different post-infarction
studies [2].

5. Results

Figure 1 shows one-way, two-way PDP and feature rel-
ative importance for HF low risk 1(a), HR high risk 1(b),
MI low risk 1(c), and MI high risk 1(d) using BRT.

The three most important features for HF low risk were
Sdnn, Avnn, and SCL. There were a negative relationship
between SDNN and TS and SCL and TS. The three most
important features for HF high risk were AVNN, scl and ci.
There existed a positive relationship between AVNN and
Ts and a negative relationship between TS and scl. Condi-
tions just near VPC (i.e. SCL and CI) had more influence
on HRT response for high risk than for low risk patients.

The three most important features for MI low risk pa-
tients were rmssd, sdsd, and age, whereas for MI high
risk were Scl, rmssd (very close), and Avnn. Interestingly,
there seemed to be a two-state behaviour, that can be ob-
served in the relationship betwen rMSSD and TS and SCL

and TS . There is a value for rmssd, and Scl, from which
the value of the TS parameter changes from small to high
values. The relationship between TS and the two most im-
portant variables seems to be smoother on HF patients. For
both data sets, conditions just near VPC had more influ-
ence on high risk patientes, than the general ANS status.

6. Conclusions

In this work we propose to use BRT to model the rela-
tionship between HRT parameter TS and variables SCL,
CI , Age, and Sex and six HRV time domain indices, both
statistical and geometrical. HRV was assessed on 3-min
NN interval segments just before every VPC. The model
was fitted using data from MI and HF decompensated
patients. Datasets were split into two different groups,
namely, low risk and high risk groups according to TS and
TO cut-off values reported in the literatue.

Results suggested that ANS status, assessed by HRV on
the 3 previous minutes to the VPC, have higher influence
on HRT response on low risk patients. In high risk patients,
the heart rate just before the VPC has more influence on the
HRT response. Interestingly HF patients showed a nega-
tive relationship between SCL and TS, which is a the op-
posite behavior to that reported in the literature. For both
data sets, conditions just near VPC had more influence on
high risk patients, than the general ANS status.

Further work should be directed to incorporate HRV fre-
quency domain indices, which allows to better character-
ize the ANS. Also, comparing HRT dynamics, regarding
the proposed explanatory variables, between different pa-
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tient groups may give some insight on cardiovascular risk
stratification.
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