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Abstract

Arrhythmic behaviors are a major risk to the population.
These are diverse and can have their origin in cellular dy-
namics that affect the functioning of the heart. When trying
to understand the mechanisms behind arrhythmogenesis
the epicardial electrograms present themselves as a useful
measurement because they reflect the electrical behavior
of the cells surrounding the electrodes. Nevertheless, there
is a lack of methods in the literature to automatically pro-
cess and analyze these signals. In this paper, an algorithm
to automatically detect the R, S and T wave peaks in epi-
cardial electrogram signals is presented. This algorithm
uses the derivative of the signal to find the activation and
recovery times, and uses these as fiducial points to find the
desired features. These features are then used as inputs to
an artificial neural network, trained to classify individual
beats into ‘healthy’ and ‘pathological’. After optimization,
both the detector and the neural network showed good per-
formance in their tasks; furthermore, the robustness and
amenability to real-time implementation of the methods
here presented make them ideal for monitoring patients or
experimental platforms when epicardial electrograms can
be measured.

1. Introduction

Cardiovascular diseases (CVD) remain the number one
cause of death in the world. Nowadays, the electrocardio-
gram (ECG) is the preferred method to assess the risk of a
person suffering a heart-related disease. Notwithstanding,
the ECG finds a limitation when trying to determine the
cellular mechanisms that lead to CVDs because it sums the
contributions from the electrical activity of the whole heart
and provides no means of assessing the cellular causes for
pathology. Studies that need a closer look at the cellu-
lar dynamics use cardiac surface electrograms, obtained by
placing electrodes on the surface or inside the walls of the

heart. This acquisition is preferred when monitoring open
heart surgeries or ex-vivo experimental platforms because
it is an indicator of the electrical activity of the cells that
surround each one of the electrodes. By analyzing the mor-
phology of the electrogram, one is capable of formulating
hypotheses about what is happening at the cellular level
that is producing a pathology at the organ level.

Previous studies have shown how pathological behav-
iors at a cellular level may lead to dangerous arrhythmic
behaviors [1] and how these are reflected in the epicardial
electrogram [2–6]. Authors have pointed out the impor-
tance and possible impact of performing automatic anal-
yses of electrograms [7]; but surprisingly, there is, nowa-
days, a gap in the literature involving the automatic ex-
traction of features from electrograms and their evaluation
is usually done visually and manually. This paper pro-
poses an algorithm to automatically detect the main waves
observed in the epicardial electrograms: the R, S and T
waves. The applicability of these measurements is proven
by using the extracted features as inputs to an artificial neu-
ral network for beat classification.

2. Materials and Methods

2.1. Data acquisition

Unipolar epicardial electrograms (EGM) were acquired
by means of a custom-made electrode grid placed on the
left ventricle of a porcine heart during a Physioheart exper-
iment. This is an ex-vivo experimental setup, developed by
LifeTec Group (Eindhoven, Netherlands) [8], by means of
which the physiology and pathology of a porcine heart may
be studied under conditions that closely resemble those
found in-vivo [9]. The grid contained 121 electrodes or-
dered in a 11x11 grid, and allowed the recording of the
electrical activity of the epicardium during the experiment.
Signals were acquired using a Biosemi Active Two acqui-
sition and pre-processing system at a sampling frequency
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of 2048 Hz and the digitized signals – referred to as s[n]
from here onwards – were stored in a computer for further
processing. A total of B = 34765 beats were recorded
from over an hour of the experiment duration. Many differ-
ent morphologies can be found among the recorded beats,
corresponding to both healthy and pathological states.

2.2. Signal conditioning

The acquired signals (s[n]) were digitally filtered using
a high-pass, fourth order, Butterworth filter with cutoff fre-
quency fc = 0.5 Hz; this filter eliminated the baseline off-
set introduced by the acquisition system and the baseline
wander caused by slow electrode movement. Afterwards,
the time derivative of the signal was calculated as:

ds[n]

dn
= s[n]− s[n− 1], n ∈ [2, N ] (1)

where N was the number of samples in the signal. In the
derivative the pacing signal showed as an abnormally large
deflection; this, along with an arbitrarily high threshold,
was used to segment all the beats from s[n], and all the fol-
lowing steps were performed on each individual beat (bi[n]
with i ∈ [1, B]). The interest in processing each beat sepa-
rately was in that such treatment is more easily translatable
to a real-time application. Following segmentation, a dig-
ital low-pass, fourth order, Butterworth filter with cutoff
frequency fc = 40 Hz was applied to the segmented beats
to eliminate the low amplitude, high frequency noise pro-
duced by the electrodes vibration. Observe that this filter
would have eliminated the high frequency component that
makes the pacing signal so visible in the derivative, this
is why it was only applied after the beats had been seg-
mented.

2.3. ARI-based detector

One of the most important features of the EGM is the
activation-recovery interval (ARI), which reflects the ac-
tion potential duration of the cells surrounding the elec-
trode [2]. The activation time can always be found as the
point where the derivative of the signal is minimal, and the
recovery time as the point where the derivative of the sig-
nal is maximal during the T wave [4]. The derivative of
each filtered beat (dbi[n]/dt) was calculated as shown in
Eq. 1 and the activation (At) and recovery (Rt) times were
found as:

Ati = argmin
n

(
dbi[n]

dn

)
, n ∈ [1, SWAt] (2a)

Rti = argmax
n

(
dbi[n]

dn

)
, n ∈ [Ati+n1, Ati+n2] (2b)

Table 1. Values taken by n3 and n4.

Feature n3 n4

Ri Ati − SWR Ati

Si Ati Ati + SWS

Tprei Rti − SWTpre
Rti

Tposti Rti Rti + SWTpost

with n1 = 100 ms and n2 = 400 ms – the minimum and
maximum possible phyisiological values for the activation-
recovery interval, respectively – and SWAt was a search
window, optimized as explained in Section 2.5. The acti-
vation and recovery times, them being the easiest to find,
were then used as reference points to search for the fea-
tures of each beat of the epicardial electrogram. The R, S
and T waves’ peaks were found by looking for zero crosss-
ings (ZC) in the derivative of each beat as follows:

ZCi = {n ∈ [n3, n4]

| sign

(
dbi[n]

dn

)
6= sign

(
dbi[n+ 1]

dn

)
}

(3)

were, n3 and n4 define the limits of the signal intervals
where zero crossings were looked for when detecting each
of the features; these values are defined in Table 1, where
SWx were search windows, optimized as specified in Sec-
tion 2.5.

Special consideration has to be given to the T wave
since, as shown by Potse et al. [5], it can be either posi-
tive, negative or biphasic. A T-wave peak occurring before
the recovery time will always be negative, whereas a peak
after the recovery time will always be positive, regradless
of the morphology of the T wave. This is why two thresh-
olds were defined:

γTpre = −γ1max(|bi[n]|) n ∈ [n3, n4] (4a)

γTpost
= γ2max(|bi[n]|) n ∈ [n3, n4] (4b)

and zero crossings in the derivative before the recovery
time were only considered T wave peaks if the signal am-
plitude at that point was less or equal to γTpre

and those
after the recovery time were only kept if the amplitude of
the signal was greater or equal to γTpost

, both thresholds
were optimized as will be later explained.

Finally, to avoid signaling false peaks due to noise, the
R peak was chosen as the zero crossing in which the signal
(bi[n]) had the largest amplitude and the S peak where the
signal was at it’s lowest amplitude among the zero cross-
ings within their respective search windows. For the T
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wave a similar method is applied; if looking before the
recovery point the zero crossing where the signal was min-
imal was chosen, if looking after the recovery point the the
zero crossing where the signal was maximal was chosen.

2.4. Performance evaluation

Automatic detections were compared to manually made
annotations of the peaks; a detection was considered to be a
true positive if the automatic mark happened within 10 ms
of the manual annotation, it was considered a false posi-
tive if it happened with no manual mark within 10 ms and
a false negative was considered when no automatic mark
was within 10 ms of a manual annotation. The detection of
each of the peaks was evaluated using the sensitivity (Se)
and positive predictive value (P+) of the automatic detec-
tions, calculated as:

Se = TP/(TP + FN) ∗ 100 (5a)

P+ = TP/(TP + FP ) ∗ 100 (5b)

where TP is the sum of all true positives, FP the sum of
all false positives and FN the sum of all false negatives.

2.5. Detection optimization

To accurately estimate the generalization error and to
avoid overfitting in the optimization of the parameters
a cross-validation approach was used. A 10-fold cross-
validation algorithm was performed on 75% of the avail-
able beats, randomly sampled with a uniform distribution,
to decide which combination of parameters produced the
best results. During the cross validation, receiver oper-
ating characteristic (ROC) curves were used to measure
the error in the detections as a function of the sensitivity
and the positive predictive value. A set of parameters was
considered better if the distance of it’s point on the ROC
curve was closer, in an Eucledian sense, to perfect detec-
tion (Se = 100%, 100 − P+ = 0). The parameters that
performed best in the cross validation were then tested on
the remaining 25% of the data to report the final Se and
P+. This was repeated 10 times, and the performance of
the delineator, later reported, is the best Se and P+ ob-
tained over the ten iterations.

First, SWAt and SWR were simultaneously optimized
in order to maximize the performance in the R peak de-
tection. Afterwards, and using the previously optimized
parameters for R peak detection, SWS was found to opti-
mize the detection of the S peak. Finally, the T wave peak
detection was optimized by looking for the combination
of SWTpre

, SWTpost
, γTpre

and γTpost
that produced the

closest-to-perfect detection.

Table 2. Optimized parameters and detection perfor-
mance.

Feature Optimized Parameters Se P+

R peak
SWAt = 210 ms

99.98% 99.98%
SWR = 25 ms

S peak SWS = 45 ms 99.50% 99.50%

T peak

SWTpre = 100 ms

97.98% 98.21%
SWTpost = 50 ms

γ1 = 0.45

γ2 = 0.35

2.6. Automatic classification

As an example of the utility of these features, they were
used as inputs to a fully-connected multi-layer perceptron,
called artificial neural network (ANN), which was trained
to classify the signals between ‘healthy’ and ‘pathologi-
cal’. The signals were manually annotated and the ANN
was trained following established practices to avoid bias
and variance. Additionally, for three different ANN depths
(2, 3 and 4 hidden layers) the number of hidden units per
layer (constant along layers) was varied to find the opti-
mal topology. The ANN was implemented using Theano
(0.9.0) on Python (3.6.1). The performance of the network
was measured using the Se and P+ performance metrics
from Eq. 5.

3. Results

Table 2 shows the performance of the detection system
after optimizing the parameters. The detector proved to
be efficient in detecting the three desired features. The R
and S peak detections showed the highest performances,
them being over 99% in both Se and P+. Also the T peak,
which is the smallest deflection and the most susceptible
to noise, was detected with high performance, showing Se
and P+ close to 98%.

Table 3 shows the best performance for each of the ANN
depths after training. Results show that as the depth of the
network increased so did the number of hidden neurons re-
quired per layer needed to achieve the same performance.
Also, Table 3 shows that the increase in performance is
small as the complexity of the network (i.e. more fully
connected neurons) is increased.

4. Discussion

The algorithm presented in this paper can be used as a
first step in the automatic processing and analysis of the
EGM. The results shown in Table 2 suggest that the opti-
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Table 3. Neural network performance for three network
topologies.

Hidden layers Hidden neurons P+ Se
2 12 97.9% 94.6%
3 13 98.7% 93.6%
4 23 94.4% 98.1%

mization process worked correctly, since the choice of pa-
rameters resulted in high performance values when tested
on data not used for training. The use of ROC curves to
pick the best parameters for the detector ensured that the
amount of false positives and false negatives was mini-
mized when the detector was applied to ‘unseen’ data, this
guaranteed the best possible balance between Se and P+

in the detections. These optimal features were then used
as inputs to an ANN; one can observe that increasing the
number of layers in the network did not translate into a
significant improvement in performance. Using two hid-
den layers already provided good performance in classi-
fication, and the use of few layers, and thus neurons, is
preferable in monitoring applications because it reduces
the time required to process the inputs. Hence, the use
of the detection algorithm along with a trained ANN with
two hidden layers and 12 neurons per layer proved to be
optimal for the classification of the beats.

A distinct advantage of these methods is that they re-
quire no further information than that contained in each
beat to perform the detection of the features and classifica-
tion of the beat. Furthermore, the use of computationally
inexpensive techniques allow the extraction of features and
further classification before the next beat is acquired. The
ability to analyze cardiac electrograms in real-time would
enable the development of a variety of tools for diagnostic
and intervention, these tools require fully automated algo-
rithms with minimal human input [7]; the methods pre-
sented here fit those requirements and they provide a tem-
plate for the automatic analysis of EGM.

5. Conclusions

An algorithm to detect the peaks of the main waves of
beats segmented from left ventricular unipolar epicardial
electrograms and then classify the beats into ‘healthy’ or
‘pathological’ has been presented. The optimized detec-
tion algorithm achieved high Se and P+ values in the de-
tection of all wave peaks, which were used as input to a
neural network that successfully classified the beats. This
work sets a framework for the use of unipolar electrograms
and machine learning techniques as a means to quantify the
risk of suffering from pathological behaviors that may lead
to arrhythmias.
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