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Abstract 

    Deep learning has achieved a great success in the 
fields of image and audio recognition because of avoiding 
explicit feature extraction and attaining high 
classification accuracy. In this paper, we explore the 
application of deep convolutional neural networks 
(DCNNs) for automatic detection of atrial fibrillation 
(AF). The 2-dimension parameter input structure is 
essential for DCNNs and tens of thousands of samples are 
also needed for the proper operation. As we know, ECG 
is one-dimension time-varying signal, which doesn’t 
match the requirement for the input structure of DCNNs. 
Furthermore the number of the marked AF samples is 
also limited. To address these problems, we adopt the 
stationary wavelet transform (SWT) for ECG 
preprocessing and then the processed signal is 
reorganized into two-dimensional parameter structure to 
meet the requirement of input structure of DCNNs. 
Besides, the original ECG signals are divided into very 
short data segments (namely 5-second segments) for the 
following reasons. On the one hand, short ECG segment 
is helpful for the algorithm assessment of short AF 
episode detection. On the other hand, it can also increase 
the number of AF sample for machine learning and 
experiment evaluation. As for DCNNs, multiple 
convolutional layers and fully connected layers are used 
for deep learning. On the MIT-BIH Atrial fibrillation data 
set, the proposed method can achieve sensitivity of 
98.79%, specificity of 97.87% and accuracy of 98.63%, 
which outperforms most of other algorithms. 

 
 

1. Introduction 

Atrial fibrillation (AF) is the most common cardiac 
arrhythmia. Though AF itself does not represent a lethal 
condition, it can increase risks of morbidity or even 
mortality due to AF-related complications. It has been 
reported that the presence of AF is associated with a 3-
fold risk of developing heart failure (HF) [1] independent 
of other risk factors.  

Currently, a wide variety of algorithms have been 
developed for automatic AF detection. These algorithms 
mostly rely on the absence of P-waves or irregularity of 

R-R intervals or some hand-crafted features [2]. The 
performance of most extant algorithms strongly depends 
on the detection of P or R peak. If the related peaks are 
missed or erroneously detected, their performance will 
substantially degrade [3]. Furthermore, due to the 
challenges of extracting reliable feature, the methods 
needed hand-crafted feature extraction may not fit to be 
widely applied clinically. Aimed at addressing the 
deficiencies and drawbacks of existing AF detection 
algorithms, we propose a novel method for automatic AF 
detection based on deep convolutional neural networks 
(DCNNs).  

Deep learning develops a computational models 
consist of multiple processing layers which can learn 
abstract representations (or called feature maps) of data 
[4]. Deep learning allows a machine to take raw data as 
input and to automatically discover the representations 
needed for detection or classification. For discovering 
intricate structure in data sets, deep learning transforms 
the representation of one level to the representation of a 
higher and abstract level through a non-linear function. 
And then it uses the back propagation algorithm to 
change parameters which are used to calculate the 
representation of each layer. After enough of such 
transformations and changes, a machine can learn a 
complex function for feature extraction and classification 
[5]. Over passed years, deep learning has been proved 
very successful in speech recognition, image recognition 
and many other domains [5]. However, deep learning has 
not been used widely in ECG analysis and classification 
because of small training collection and specificity of 
ECG signal. How to build an effective learning strategy 
for ECG signal is still a challenging problem. 

To our knowledge, this is the first study using DCNNs 
for the purpose of AF detection. As opposed to traditional 
approaches, the proposed approach does not require P or 
R peak detection and voids the need for any manual 
feature extraction. With proper training, the convolutional 
layers of DCNNs can learn to extract patient-specific 
features.  

 
2. Methods 

2.1. Pre-processing 
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The original beat-to-beat annotated ECG signal is 
divided into segments for every 5 seconds by using a 
percentage parameter P [6]: A segment is considered to 
be a true AF only when the annotated AF beats in that 
data segment with a percentage greater than P. In our 
study, we set P to 0.5. In order to remove baseline wander, 
muscle noise and power-line interference, an elliptical 
band-pass filter with filter order of 10 and passband of 
0.5-50 Hz is applied to each segment.  

 
2.2. Stationary wavelet transform 

     We choose the stationary wavelet transform (SWT) 
since it is time-invariant at each decomposition level. 
Since the SWT with J-levels on a signal requires the 
signal length to be a multiple of 2J, the filtered data 
segment needs to be zero-padded. The detail coefficients 

)(nDj  and coarse coefficients )(nC j  in time domain 
can be recursively computed as: 
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     After pre-processing step, we employ SWT on each 5-
second segment to obtain one kind of representation on 
filtered data. It is worth noting that we use SWT to 
generate 2J ( J detail coefficients and J coarse 
coefficients) time series for each segment. Each 
coefficient time series has the same time resolution as the 
original signal segment. The 2J  time series are 
organized in a two-dimensional (2-D) matrix of which 
every row stands for one coefficient time series. DCNNs 
are often used for image classification, and require the 2-
D array input. For color images, RGB (red, green, blue) 
values can be regarded as three different 2-D feature 
maps. The 2-D matrix of coefficients time series can be 
regarded as a grayscale “image”. Thus, this type of 
representations can be used as 2-D input of DCNNs. 
Figure 1 shows the 2-D matrix of coefficients time series 
input type normalized to [-1,1]. As mentioned above, the 
2-D matrix of coefficients time series is the 2J  time 
series where J  means SWT with J-levels. In this study, 
we choose the Daubechies 5 wavelet as the mother 
wavelet, which is an orthogonal wavelet and is similar to 
the ECG waveform [7], to implement wavelet analysis. 
Considering the sampling frequency of 250 Hz and the 
frequency range of atrial activities (4-9 Hz) [8], we set the 
number of wavelet transform decomposition level J  to 6. 
So Figure 1 has total 12 rows (6 rows of detail 
coefficients and 6 rows of coarse coefficients).  

 

 
 

Figure 1. Graphical representation of a 5-second 2-D 
matrix of coefficients time series used as the input of 

DCNNs. 
 
2.3. DCNNs architectures 

DCNNs are a popular type of deep learning 
architecture and are composed of mainly three types of 
layers: convolutional layers, pooling layers and fully 
connected layers. A convolutional layer applies a set of 
weights called filter bank or kernel to process small local 
parts of the feature map from previous layer (or raw 
input). Feature maps consist of many neurons called units. 
Each unit in feature maps of current convolutional layer is 
connected to local areas in the feature maps of the 
previous layer through the filter bank. The sum of the 
local weights is then passed through a non-linear function 
such as a ReLU. It is noteworthy that in a convolutional 
layer, different feature maps use different filter banks but 
all units of one feature map share the same filter bank. 
The convolutional layer plays the role of detecting local 
connections of features from the previous layer but the 
pooling layer plays the role of merging similar features 
into one. Due to neighbouring units have correlation with 
each other, reliable detection can be done by generating a 
lower resolution feature map. Pooling layer can reduce 
the dimension of feature maps and the number of 
parameters, and create an invariance to translation and 
distortion. At the end of the DCNNs, there are usually 
some fully connected layers. Top fully connected layers 
perform the classification task and produce the final class 
vector. The back propagation algorithm used in the 
DCNN adjusts all the weights in all filter banks as it does 
in a conventional deep network. In brief, there are four 
main concepts behind the DCNNs: local connections, 
sharing weight, pooling and the use of multiple layers. 

Table 1 shows the detailed architecture of DCNNs for 
automatic AF detection. The architecture is composed of 
two convolutional layers, two max-pooling layers, two 
ReLU layers, one dropout layer, two fully connected 
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layers and one softmax layer. The first convolutional 
layer with kernel size of 3×11 has 32 hidden units 
followed by a ReLU layer. The pooling size of the first 
pooling layer is 2×3. The second convolutional layer 
with kernel size of 2× 11 has 32 hidden units. The 
pooling size of the second pooling layer is 2×3. The first 
fully connected layer has 100 hidden units followed by a 
ReLU layer and then a dropout layer. The second fully 
connected layer has 2 hidden units. Finally, there is a 
softmax layer with 2 outputs.  
 
Table 1. The detailed architecture of DCNNs. 

 
Layer # of 

output 
Kernel size/ 
Pooling size 

Conv1 32 3 x 11 
ReLU1 32  
Pool1 32 2 x 3 
Conv2 32 2 x 11 
Pool2 32 2 x 3 
Fc1 100  

ReLU2 100  
Dropout1   

Fc2 2  
Softmax 2  

 
3. Results 

3.1 Data set 

The MIT-BIH Atrial fibrillation (MIT-BIH AFIB) data 
set [9] which is the most popular database for the 
assessment of AF detection is used to evaluate the 
performance of the proposed algorithm. 

 
3.2 Experimental result 

The experiments are performed on a computer with 2 
CPU at 2.1 GHz , 2 NVIDIA Tesla K40c GPU and 32-Gb 
memory. We run the proposed DCNNs over our highly 
efficient GPU using Caffe deep learning framework [10]. 
Table 2 summarizes the performance of our method and 
the existing algorithms [2, 11-13] published in recent few 
years validated on the MIT-BIH AF database.  

Huang[11] and Lee[12] methods need to detect R-R 
intervals. Babaeizadeh[13] methods need to detect both 
R-R intervals and P wave. Their performances depend on 
the accuracy of peak detection and when missing peaks or 
erroneously detected peaks, their performance will be 
poor. Although, Asgari[2] method does not need to detect 
R-R intervals or P wave, they manually selected the peak-
to-average power ratio and log-energy entropy of the 
signal as features of AF detection.  

In contrast, our proposed method does not rely on peak 

detection and other manual features and achieves the 
sensitivity of 98.79%, specificity of 97.87% and accuracy 
of 98.63%, which outperform all other methods from 
Table 2. 

 
Table 2. The comparison of performance. 

 
Algorithm Sensitivity  Specificity 

Huang et al.[11] 96.10% 98.10% 
Lee et al.[12] 98.20% 97.70% 
Babaeizadeh et al.[13] 92.00% 95.50% 
Asgari et al.[2]  97.00% 97.10% 
Our method 98.79% 97.87% 

 
4. Conclusion 

In this paper, we convert the one-dimensional ECG 
signal into two-dimensional form by stationary wavelet 
transform, so as to realize the detection of atrial 
fibrillation using deep convolution neural network. In this 
way, there is no need for the detection of P or R peak and 
the extraction of handcrafted manual feature. The results 
of experiments, which are performed over the MIT-BIH 
Atrial fibrillation (MIT-BIH AFIB) database show that 
our DCNNs with input form based on SWT has 
sensitivity of 98.79%, specificity of 97.87%, accuracy of 
98.63%, which outperforms the majority of the existing 
algorithms. Furthermore, the proposed method performs 
very well for data segment as short as 5-second. As a 
result, the proposed approach is a fast, accurate, efficient 
method for detection of atrial fibrillation. 
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