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Abstract

Introduction: Image-based models of human electrophys-
iology (EP) are increasingly considered as a clinical re-
search tool. However, current clinical EP models are typ-
ically not patient-specific as they mostly rely on generic
data or are computationally not efficient enough to fit with
clinical time scales.

Objectives: This study aimed to develop an efficient,
clinically-compatible automated workflow for patient-
specific parameterization of cardiac EP models using non-
invasive standard ECG recordings. Specifically, we fo-
cused on the parameterization of the depolarization phase
during sinus activation to reproduce QRS morphology.
Methods: Two MRI-based left-ventricular (LV) models, A
and B, were utilized. A simplified activation model was
defined based on the assumption that activation patterns
are determined by the locations, x, of septal, anterior and
posterior fascicle of the His-Purkinje system (HPS), their
relative activation timings,t, and the conduction velocities,
v, within LV wall and HPS. A reaction-eikonal model was
employed to compute activation sequences, source distri-
butions and ECGs. Latin hypercube sampling was used
to sweep the input parameter space [x, t, v]. Quantita-
tive comparison between QRS complexes of simulated and
measured ECGs was performed using a normalized corre-
lation coefficient and L2 norm.

Results: Activation sequences with corresponding QRS
complex were simulated in approximately 25 seconds. In-
herent morphological characteristics of the QRS complex
could be represented by our model parameter space [X,
t, v]. Correlation coefficients and L2 norms of 0.86 and
20.22 were attained for model A, and 0.93 and 3.06 for
model B, respectively.

Discussion: The feasibility of generating patient-specific
LV activation sequences based on measured QRS com-
plexes in non-invasive ECG recordings was demonstrated.
The efficiency of the proposed model will facilitate its use
in a future more general framework for data-driven clini-
cal EP model parameterization.
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1. Introduction

Image-based models of human cardiac electrophysiol-
ogy (EP) have been extensively used to understand the
mechanisms behind cardiac arrhythmias. With recent ad-
vancements in model generation and simulation, cardiac
EP models have also become increasingly viable as a clin-
ical tool for personalized diagnostics and treatment of ar-
rhythmias leading to increased prognosis [1,2].

These models generally implement standardized cardiac
EP or require additional patient data that is invasive to
be generated in clinical times scales, and therefore often
entirely neglect a patient’s specific EP [2]. Only a few
number of studies have attempted to achieve functional EP
specificity in a clinical context [3]. Zettinig, et.al. 2014
[3], for example, uses data-driven model estimation to fit
parameters of a computational model based on the 12 lead
ECG. However, this study is limited in scope by using only
QRS duration and electrical axis deflection as resultant pa-
tient personalization. It is therefore necessary to develop
clinically viable workflow for direct EP model personal-
ization matching to a full set of non-invasive EP record-
ings, such as the 12 lead ECG, that is capable of exploring
a large parameter space.

This study aimed to generate a computationally effi-
cient workflow for EP model personalization based on
non-invasive ECGs. In particular, an MRI-based, left-
ventricular (LV) model of cardiac EP was automatically
parameterized to generate patient-specific ventricular de-
polarization matching the QRS complex of corresponding
ECGs taken from a 12 lead ECG. Two approaches of au-
tomatic parameterization were utilized, piecewise and full,
to explore how input parameters influence resultant simu-
lated QRS morphology. We build upon the work presented
in Augustin, et. al 2016 [4], which used manual parame-
terization towards the same end.

2. Methods

Comprehensive clinical datasets acquired from a cohort
of 110 pediatric patients suffering from aortic valve dis-
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ease were used for building a set of twenty anatomically
accurate finite element models of the LV [4]. Two cases
B0504-44 and B0399-47 with corresponding ECG record-
ings of lead I, II, and V1 during sinus rhythm were se-
lected. Models were equipped with rule-based fiber archi-
tecture [5] and partitioned into nine regions using algebraic
combinations of laplacian and eikonal gradient solutions to
facilitate the assignment of transmural and apico-basal EP
heterogeneities, respectively [6]. Regional cellular dynam-
ics in each region were represented by the tenTusscher-
Noble-Noble-Panfilov model [7] with region-specific ad-
justments [8].

Impulse propagation on the LV endocardium was initi-
ated at the assumed locations of the fascicular terminals,
x, corresponding to the septal xg¢, anterior, X,¢, and pos-
terior, X,¢, fascicles. For each fascicle, both the timings, t,
and radii of direct activation, r, were prescribed.

The network topology of the His-Purkinje system (HPS)
lining the LV endocardium and the locations of Purkinje-
ventricular junctions were not explicitly modeled. Rather,
a subendocardial layer of faster CV, vps, was assumed
as a surrogate that facilitates the fast spread activation
over the LV endocardium. CVs in the LV were assumed
to be orthotropic. The steerable input parameters vec-
tor, q, that were explored is therefore given as q =
{Xst, Xaf, Xpf; tst, tar, tpfs Tst, Taf, Tpf, Vps }-

Simulations were performed using CARP [9]. Specifi-
cally, a coupled reaction-Eikonal (R-E) model [8] was used
to compute the activation sequence and electrical source
distribution throughout the LV. Briefly, the R-E model is
equivalent to a standard reaction-diffusion monodomain
model given as

OV
T = VO'IV {Vm}+lfoot(ta) _Blion (1)

ACm—

that is augmented with an artificial current, If,ot-

This current approximates the electrotonic current driv-
ing the foot of an action potential and is triggered at in-
stants of wavefront arrival times computed by solving the
Eikonal equation [10]. The key advantage of this imple-
mentation of a R-E model is the independency of com-
puted source distributions upon spatial resolution thus en-
abling the use of coarser discretized and thus compu-
tationally much cheaper meshes as it would be feasible
with plain reaction-diffusion models.The eikonal equa-
tions were solved using an advancing wavefront approach
[11].

For simulating wavefront propagation the diffusion term
was neglected, rendering the solution of Eq. (1) a localized
problem [12]. 12-lead ECGs were then reconstructed from
an artificial lead system by evaluating an integral solution
of Poisson’s equation assuming that the LV is immersed in
an infinite unbounded medium of 1 S/m conductivity.

First, a latin hypercube of 2000 runs was used to sample
combinations for model B0504-44 and B0399-47 across
the entire input parameter space q and sweeping v, from
1 to 4 m/s. Given that each simulation could be temporally
scaled, tsf was initiated at zero. To investigate the influ-
ence of parameters, a second piecewise optimization was
also performed. First, a latin hypercube sampled q for a
subset of 1000 combinations for only x and t. Simulations
were conducted assuming a constant vps of 2.0 m/s and r
of 0.1 mm resulting in singular nodal activation. The stim-
ulus parameters of x and t which provided the best ECG
fit were passed to the next stage and swept for vps. Third,
a latin hypercube of 250 runs sampled rgf, Taf, Tps USINg
the optimized stimuli and vy.

Normalized correlation coefficients (CCs) and L2 norms
served as quantitative metrics of fit between the QRS mor-
phology of simulated and reference ECGs. A modified
QRS detection algorithm was used for the alignment of
the simulated QRS complex to the QRS complex of a sin-
gle beat within lead I of the reference ECG [13]. Once
aligned, the simulated ECGs were scaled to the global
maximum and minimum of the reference ECG. The CCs
and L2 norms were normalized across all three leads.

3. Results

Each simulation and analytical comparison for B0399-
47 and B0504-44 lasted approximately 30s and 22s. Out-
comes of both full and piecewise parameter optimization
are summarized in Table 1. The simulation setup and re-
sultant activation waveform leading to QRS morphology
for B0399-47 is shown in figure 2.

Table 1: Optimal input parameters for both B0504-44 and
B0399-47 with corresponding result metrics. Locations
are presented as apico-basal and rotational coordinates.
Apico-basal ranges from O (apex) to 1 (base). Rotation
ranges from -1 to 1 with 0 indicating the septal midline.

Full Piecewise
Parameter B0504-44 B0399-47 B0504-44 B0399-47
Xsf [0.49,0.55] [0.78,0.85] [0.63,0.97] [0.39,0.7]
Xaf [0.43,0.19] [0.82,0.17] [0.87,0.76] [0.46,0.35]
Xpt [0.50,0.93] [0.83,0.46] [0.23,0.36] [0.61,0.06]
tas () 7.07 5.76 8.98 6.47
tof (8) 5.01 0.92 4.18 6.41
T (Mm) 1.60 2.03 0.10 0.10
Taf (Mm) 4.99 1.34 0.10 0.10
Tpf (mm) 3.58 1.74 0.10 0.10
Vps (M/s) 1.7 3.1 2.0 2.3
time (hrs) 14.15 19.09 8.21 10.54
CC 0.86 0.93 0.92 0.80
L2 norm 20.22 3.06 11.35 6.99

Resultant QRS morphology alongside reference ECGs,
are shown for both models and optimization methods in
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Figure 1: Simulated (red) and reference (black) QRS morphology for leads I, II, and V1 of model B0504-44 (A,C) and
model B0399-47 (B,D) for full (A,B) and piecewise (C,D) optimizations. Vertical axis is applied across all subfigures.

figure 1. General morphological curvature of the refer-
ence QRS complexes could be recreated (Figure 1) using
the proposed input parameter space q for both models, but
with the highest observed fit in Figure 1b. Fractionation
can be observed in the simulated QRS morphology, along
with dampened amplitudes primarily in leads I and II.
Full-parameter optimization required longer computa-
tion times due to an increased number of required simu-
lations, but led to drastically better quantitive metrics (Ta-
ble 1) and QRS morphology (Figure 1b) for B0399-47. In
model B0504-44, higher quantitative metrics were attained
using piecewise optimization leading to somewhat better
QRS morphology (Figure 1c). Piecewise parameterization
revealed alteration of r following stimulus site optimiza-
tion did not result in improved metrics in either model.

4. Discussion

This study demonstrated the generation of patient-
specific ventricular depolarization sequences in an image-
based LV model of cardiac EP according to ECGs during
sinus thythm within clinical time scales. The proposed
workflow serves as a technical starting point for additional
advancements and implementations of EP personalization
of image-based models of cardiac EP using non-invasive
EP recordings like the 12 lead ECG. It is our intent to in-
crease efficiency of the proposed workflow using advanced
computer automation techniques to allow for optimization
of larger parameter spaces on more anatomically specific
models while still remaining clinically relevant.

The LV model was reduced to 8 parameters relating to
timing, radii, and location of three stimulus sites, along
with maximal CV in the subendocardial layer. Additional
parameters and can be introduced to generate potentially
better fits using full-scale parameterization as was pos-
sible for B0399-47. For example, higher patient speci-

ficity could be achieved by including a fully characterized
HPS by mapping pre-constructed topological networks or
through the utilization of a cardiac conduction system al-
gorithm [14].

A larger parameter space, however, inherently re-
quires increased computational time and cost. While
it appears that a reduced input parameter space of
{Xst, Xaf, Xpf, s, tar, tpr, Vps  could adequately recreate
QRS morphology, such results could merely be a func-
tion of latin hypercube sizing. Convergence on a local
optimum, as is probable in the full parameterization of
B0504-44, could be avoided by investigating the number
of simulations required to achieve adequate fits. Com-
putational cost of optimization of large parameter spaces
could instead be reduced by implementing sampling meth-
ods with better space-filling properties, iterative parameter
feedback, or machine learning approaches.

More realistic and fully characterized data sets are a nec-
essary extension of this study. Data sets that include a
corresponding torso anatomy and complete 12 lead ECGs
would allow better forward approximations of simulated
ECGs and more thorough analysis of optimization within
the confines of the current framework. Complete ECG
morphology could be simulated and matched using four
chamber heart models.
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Figure 2: Stimulation setup (left) and resultant ventricular depolarization (middle) sequence for B0399-47 using parameters
acquired during full parameterization. Activation isochrones correspond to vertical lines in simulated ECG.
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