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Abstract

The study of the P-wave on the electrocardiogram is es-
sential in the characterization of atrial conduction defects
that may anticipate cardiac pathologies, such as atrial fib-
rillation. This evidence exhibits the need to develop re-
liable methods for accurate automatic delineation of P-
waves. Many different strategies for delineating P-waves
have been introduced. Nonetheless, they all share the same
principle of smoothing aggressively the P-wave pattern to
facilitate its delineation. However, that strategy may pro-
voke morphological alterations in the P-wave under study
that could lead to inaccurate delineation. Alternatively,
the present work introduces a new delineation strategy
grounded on the generation of a Gaussian model of the P-
wave under study to assist its delineation and an adaptive
slope threshold that takes into account the morphology of
the preceding P-waves. The method was validated using
the annotated QT database from Physionet. Delineation
results provided a detection sensitivity of 100%, whereas
the mean and standard deviation of the delineation error
for the P-wave onset, peak and offset were 4.71± 9.59 ms,
2.82± 6.69 ms and 0.6± 9.79 ms, respectively. These re-
sults demonstrate that the proposed strategy provides ac-
curate delineation of P-waves that outperforms others pre-
sented in the literature, in particular in terms of stability.

1. Introduction

The P-wave on the electrocardiogram (ECG) represents
the electrical activity of the atria and is considered the most
reliable non-invasive source of information about atrial
conduction [1]. Some morphology characteristics of the P-
wave such as its maximum duration or dispersion, among
others, have been associated to a higher recurrence and in-
cidence of Atrial Fibrillation (AF), the most common ar-
rhythmia [2]. However, the extraction of information as
the boundaries of these waveforms is a complex task due
to the absence of standard measurement techniques [2] and

the lack of a consensus about the precise definition of the
location of these points in the ECG signal. Moreover, man-
ual delineation is a time consuming task with inaccurate
results that may vary significantly as a function of the ex-
perience and/or fatigue of the physician as well as the pres-
ence of noise within the signal [3]. Consequently, this fact
has motivated the development of a wide variety of auto-
matic P-wave delineation methods based on different prin-
ciples. The strategies followed by them range from the
use of mathematical tranforms as the phasor transform [4]
or the wavelet transform [3, 5] to the differentiation of the
ECG signal [6], among others.

The method proposed in this study is based on the dif-
ferentiation of the signal as proposed by Laguna et al. [6],
but with decisive differences as the calculation of an adap-
tive slope threshold that takes into account the morpholog-
ical characteristics of the preceding P-waves and the cre-
ation of a Gaussian model of every P-wave to assists its
delineation. In this way, it has been designed an algorithm
capable of detecting and delineating accurately a wide va-
riety of P-wave shapes which, in addition, is more respect-
ful with the morphology of the waveforms and more stable
than other methods presented in the literature.

2. Methods

2.1. Dataset and preprocessing

For validation purpose in this study it has been used the
standard QT Database (QTDB) [7]. This database contains
105 fifteen-minutes two leads ECG recordings collected
from other existing databases with at least 30 manually an-
notated beats per recording. This database has been cho-
sen as the reference for other P-wave delineator develop-
ers for presenting a wide variety of P-wave morphologies
and being almost the only free available standard database
that contains manual P-wave boundaries annotations. Even
though, the lack of accuracy of these annotations, declared
as performed at full scope of the two available leads, has
been questioned in several previous studies. One recent
example can be found in [3].
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Before the proposed delineation method is applied, the
input ECG must be properly conditioned. Initially, the sig-
nal is resampled up to 1 kHz, the base line is eliminated by
subtracting the signal envelope and the power line inter-
ference frequency component is removed through adaptive
filtering. Later, the high frequency muscle noise is reduced
first by applying a wavelet-based method and a bidirec-
tional low-pass filter. The cut-off frequency selected was
70 Hz, a less aggressive filtering than other comparable
methods [3, 6]. This option responds to the demonstrated
existence of much higher frequency components in the P-
wave than the usually considered [8] and a reduction in
the transient effect produced by the proximity of the QRS
complex. The last step of the preprocessing is a supervised
location of the R-peaks within the signal [9].

2.2. Delineation algorithm

In the proposed method, each P-wave is not delineated
independently. Instead of that, certain parameters calcu-
lated from previously delineated waveforms are used as
previous information to guide the location of the fiducial
points within a P-wave. Consequently, an initialization
step is needed at the beginning of the delineation process
in which these parameters are obtained from a reference
P-wave, which construction is described next.

2.3. Reference P-wave construction

Initially, signal segments prior to the first five R-peaks
previously detected are averaged to create a reference seg-
ment of the signal. From this, the QRS onset is estimated
first and then, prior that point, in a search window of length
equal to one third of the median RR distances, the peak
with greater amplitude is sought. This point is labelled as
the reference P-wave peak. Around that position, a seg-
ment of 180 ms in length is isolated, and will serve as the
reference P-wave. Extraordinarily, if the median RR in-
terval is too long (>900 ms) or too short (<600 ms) this
length is increased or reduced by 20 ms, respectively.

This constructed P-wave might be first categorized as
monophasic positive, monophasic negative or biphasic
(positive–negative or negative–positive). To do so, a de-
cision algorithm is performed as follows. First, a Gaussian
function is generated so that it fits the P-wave in the best
way possible. If the fit is good enough, statement that for
this method is translated as a Pearson correlation coeffi-
cient greater than 0.7, the waveform is determined to be
monophasic positive. Otherwise, the procedure is repeated
with the P-wave inverted. In case a proper fit is obtained
now, the waveform is classified as monophasic negative.
Finally, in case of a new mismatch the waveform is clas-
sified as biphasic. For this latter case, the two peaks of
the biphasic P-wave are sought forward and backward and

the P-wave window is recentered to fit the biphasic mor-
phology. Furthermore, a new Gaussian model to better fit
the biphasic wave is created by increasing the order of the
Gaussian function. This order is augmented until a Pearson
correlation between the P-wave and the Gaussian function
higher than 0.7 is reached.

It might be noticed that some P-waves can be asymmet-
rical. In those cases the Gaussian model will not fit ac-
ceptably in any case, which may compromise the delin-
eation performance. When this occur, each half of the P-
wave is delineated independently by constructing two arti-
ficial waveforms. This is done by meeting both halves with
themselves mirrored. Then the delineation of just one half
of those artificial waveforms is carried out, as they were
distinct P-waves.

To determine the boundaries of the waveform, the Gaus-
sian function is differentiated first and then, the maximum
values in each half of the wave are identified, which are
the points in which the Gaussian function presents its max-
imum slopes. Later, based on those values, a slope thresh-
old is calculated and the boundaries of the waveform are
determined as the points in which the threshold is ex-
ceeded. To determine the mathematical relationship be-
tween the maximum slope of a waveform and the slope
in its boundaries in each case, a total of 60 P-waves were
manually delineated by two expert physicians. Thus, this
relationship was plotted and the function that resulted to be
the best fit, with an R-square score of 0.815, was simplified
to obtain the following equation defining the threshold:

Th(x) =
0.0058 · x
x+ 0.012

, (1)

where x stands for the waveform maximum slope.
After the Gaussian function has been delineated, the

process is repeated with the real P-wave, but restricting
the search area for each fiducial point to the vicinity of
their position in the model wave. Figure 1 plots an exam-
ple of this situation in which these intervals are colored in
gray. The width of the regions around each fiducial point
depends on the goodness of the Gaussian fit. Thus, Fig-
ure 1 shows how the area around the offset of the Gaussian
model is wider (see offset of this P-wave) as the fit is worse
in that half of the wave.

In summary, from the representative P-wave already de-
lineated, the following information is obtained: differences
in time and amplitude between the maximum peak of the
waveform and its boundaries, the approximated position of
the wave with respect to the R-peak, the width of the search
window (defined as the width of the waveform, widened a
quarter of it on each side), the type of the waveform mor-
phology and some starting coefficients for the Gaussian fit.
All this knowledge about the morphology of the P-wave
taken as reference will be used to ease the delineation of
the P-waves individually.
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Figure 1. Real P-wave (solid line) and its Gaussian model
(dotted line). (a) The detected boundaries on the Gaussian
waveform are indicated as black asterisks. The fiducial
points search interval is shaded in grey around them. Ref-
erence distances in time and amplitude between the peak
and the offset computed by taking into account previous
waveform morphologies are also displayed. (b) Enlarged
beginning with a grey asterisk detected in the real wave as
candidate for P-wave onset. (c) Enlarged wave end with
different grey shapes are the candidates for P-wave offset.

2.4. Individualized P-wave delineation

With all the information obtained from the initialization
step, every P-wave is detected in its corresponding search
window prior to the R-peak. The delineation method is
basically in the same as described before for the reference
P-wave. The only difference is the possible existence of
more than one fiducial point candidate. In that case, the
final decision is based on the morphology parameters that
were calculated during the initialization phase. This cir-
cumstance is also illustrated in Figure 1.c, where three off-
set candidates are represented as different grey geometric
figures. First, the triangle option would be discarded as it is
outside the restricted interval. And then, between the two
remaining options, the square option would be selected as
it is closer to the point determined by the morphology pa-
rameters: distances from peak to offset in time and ampli-
tude obtained from previously delineated P-waves.

Table 1. Comparison of the delineation performance of
some of the most relevant P-wave delineation methods in
the literature by means of two Validation Parameters (V.P.)
making use of the QTDB.

Methods V. P. PON PPEAK POFF

This method Se(%) 100 100 100
µ± σ(ms) 4.7±9.6 2.8±6.7 0.6±9.8

A. Martı́nez
et al. [4]

Se(%) 98.65 98.65 98.65
µ± σ(ms) 2.6±14.5 32±25.7 0.7±14.7

J.P. Martı́nez
et al. [5]

Se(%) 98.87 98.87 98.87
µ± σ(ms) 2.0±14.8 3.6±13.2 1.9±12.8

P. Laguna
et al. [6]

Se(%) 97.7 97.7 97.7
µ± σ(ms) 14±13.3 4.8±10.6 −0.1±12.3

Ultimately, once the new P-wave has been delineated,
all the parameters obtained which are associated to the ref-
erence P-wave are also recomputed with the aim to update
some possible variations. An influence ratio of 20% over
the total has been considered. However, before the com-
putations are made, every pair of values are compared. In
case the difference is sufficiently large (> 25%), the wave
is labeled as abnormal and the refreshing procedure for the
reference P-wave is aborted.

3. Results

To asses the performance of the proposed algorithm, the
delineation error was computed as the difference in time
between automatic delineation and manual annotations in
the QTDB. For each recording, the larger set of manual an-
notations in the database was considered. Thus, the global
score is presented in terms of the average value of the error
(µ) and its standard deviation (σ) as proposed by Martı́nez
et al. [5]. Also the detection performance is evaluated by
its Sensitivity (Se%). This parameter indicates the percent-
age of well detected events. Table 1 shows the results of the
proposed method in comparison with other relevant meth-
ods presented in the literature.

Results of the proposed method in Table 1 were obtained
by using a total of 3176 annotated beats from 96 of the
2-leads ECG recordings from the QTDB. From the origi-
nal set of 105 recordings, seven of them (sel102, sel221,
sel232, sel310, sel36, sel37, sel50) were excluded for the
delineation as no P-wave manual annotation were provided
and also recordings sel104 and sel36 were not delineated
as they did not present a minimum of three consecutive
annotated P-waves, a self-imposed condition.
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4. Discussion

The delineation results on the QTDB shown in Table 1
have demonstrated that the proposed method is capable
of accurately delineate a wide variety of different P-wave
morphologies. This has been shown by the more than
3000 waveforms delineated from a large amount of dif-
ferent manually annotated recordings specifically selected
to reflect the real world variability. Moreover, it is im-
portant to note the excellent results achieved in terms of
the standard deviation of the error and sensitivity. It can
be observed how the proposed delineation method outper-
forms the other methods in terms of these two variables.
In addition, both for P-wave onset and offset, the obtained
standard deviation values are below the acceptable toler-
ance limits stablished by the CSE working group [10], that
are, respectively, 10.2 and 12.7 ms. This exhibits the great
stability that brings the use of Gaussian models of the P-
waves as delineation assistants.

On the other hand, with respect to the average value of
the error the score obtained, even if still satisfactory, is im-
proved in some cases for those presented by other methods.
However, this standard validation parameter might be mis-
leading, since it is likely to benefit from the compensation
between earlier and later detections. This risk could be
avoided if the mean absolute error was considered instead.
Unlike other methods that are based in the use of complex
transforms [3–5], the proposed strategy is completely de-
veloped in the time domain. This option could be consid-
ered more intuitive as it is closer to the way of thinking of
physicians when delineating ECGs and, therefore, it could
allow the developers to receive feedback more easily for
the future improvements of the algorithm.

5. Conclusions

In this study, an adaptive P-wave delineation method
based on the differentiation of the signal has been pre-
sented. The use of information about the historical mor-
phology of the P-waves already delineated and the cre-
ation of Gaussian models of every single P-wave to assist
its delineation have been revealed as key factors provid-
ing higher delineation accuracy and better stability to ab-
normal P-waves, thus outperforming other methods pre-
sented in the literature. Moreover, this algorithm allows
a monitoring of the P-wave morphology trend along the
ECG and detect anomalous events. Therefore, this method
could represent a potencial solution for the identification
of progressive changes in the electrical properties of the
atria which may help to foresee the occurrence of episodes
of arrhythmias, such as atrial fibrillation, or in the clinical
decision-making with respect to the diagnosis of cardio-
vascular diseases related with atrial conduction defects.
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[6] Laguna P, Jané R, Caminal P. Automatic detection of wave
boundaries in multilead ECG signals: Validation with the
CSE database. Computers and Biomedical Research 1994;
27(1):45–60.

[7] Laguna P, Mark RG, Goldberg A, Moody GB. Database for
evaluation of algorithms for measurement of QT and other
waveform intervals in the ECG. In Computers in Cardiol-
ogy. 1997; 673–676.

[8] Sörnmo L, Laguna P. Chapter 6 - the electrocardiogram-a
brief background. In Bioelectrical Signal Processing in Car-
diac and Neurological Applications, Biomedical Engineer-
ing. Burlington: Academic Press. ISBN 978-0-12-437552-
9, 2005; 411 – 452.

[9] Kohler B, Hennig C, Orglmeister R. The principles of soft-
ware QRS detection. Engineering in Medicine and Biology
Magazine IEEE 2002;21(1):42–57.

[10] The CSE working party. Recommendations for measure-
ment standards in quantitative electrocardiography. Euro-
pean heart journal Oct 1985;6:815–25.

Address for correspondence:

Francisco González Molina
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