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Abstract 

Proposed algorithms for P-wave identification and 

segmentation usually search for it within a window just 

before the R peak, thus hypothesizing the presence of at 

most one P wave, as it is in a normal 

electrocardiographic (ECG) tracings. In presence of 

abnormal atrial depolarization, however, there might be 

no P waves (as in atrial fibrillation) or multiple P waves 

(as in second- or third-degree atrioventricular blocks). 

Thus, this study proposes a new Adaptive Threshold 

Identification Algorithm (AThrIA) for ECG P-waves 

whose most innovative feature is to look for P waves all 

along the heartbeat, potentially allowing multiple P-

waves identification. AThrIA ability to identify and 

segment (finding onset, maximum and offset) P waves was 

tested in simulated and experimental ECG tracings with 

no P waves, one P wave and two P waves, respectively. 

All P waves involved in the study were annotated. Results 

indicate that AThrIA correctly identified all P waves (no 

false-negative or false-positive detections). Segmentation 

errors were 0 ms for the simulated ECG tracings, and no 

more than 10 ms for the experimental tracings. Thus, 

AThrIA represents a promising tool for P-wave 

identification and segmentation in both physiological 

(one P wave) and pathological (none or multiple P 

waves) conditions. 
 

 

1. Introduction 

The electrocardiographic (ECG) signal is the 

representation of electrical activity of the heart. Being 

noninvasive, simple and cheap, it is one of the most 

clinically used test for assessing cardiac abnormalities 

and diseases. An ECG signal is characterized by a typical 

morphology composed by a sequence of waveforms 

which are pseudo-periodically repeated, each period 

representing a heartbeat. Specifically, P wave represents 

atrial depolarization; QRS complex represents ventricular 

depolarization and hides atria repolarization; and T wave 

(together with U wave, when present) represents 

ventricular repolarization. Thus, abnormalities in the 

morphology or duration of these waves may indicate the 

presence of cardiac diseases.  

Many segmentation algorithms have been proposed in 

the literature for identification of ECG waveforms. Most 

of them, however, focuses on QRS-complex and T-wave 

identification [1-4], being ventricular abnormalities more 

directly associated to malignant arrhythmias and sudden 

cardiac death [5-7]. Still, since atrial diseases like atrial 

fibrillation, junctional blocks and atrial tachycardia 

became more and more common, some algorithms have 

focused on P-wave identification and segmentation [3,8-

11] to provide information on the sinoatrial nodal activity. 

P-wave segmentation is quite challenging: P wave is 

usually 80 ms to 100 ms wide and 0.1 mV to 0.4 mV high 

[12], often represents the ECG wave with the lowest 

amplitude and may be strongly corrupted by noise. 

Usually, algorithms look for a P wave in an ECG window 

just before the QRS complex [8-10], thus hypothesizing 

the presence of at most one P wave, as it is in a normal 

ECG trace. In presence of abnormal atrial depolarization, 

however, there might be no P waves (as in atrial 

fibrillation) or more than one P waves (as in second- or 

third-degree atrioventricular blocks where there are two 

and three P waves, respectively). Thus, the aim of the 

present methodological study is to propose a new 

Adaptive Threshold Identification Algorithm (AThrIA) 

for ECG P waves, whose most innovative feature is to 

look for potential P waves all along the heartbeat.  

 

2. Methods  

2.1. Adaptive Threshold Identification 

Algorithm for Electrocardiographic P Waves  

AThrIA looks for P waves all along each heartbeat, 

identified in a RR interval (InterRR; Fig. 1). InterRR 

contains several waves, including RS complex, T wave, 

possibly U wave, possibly none, one or more P waves 

(typically one), and QR complex (Fig. 2). Search for 

potential P waves occurs with an adaptive threshold 

(THR_Search; initially set as 0.1·QRS amplitude) that 

Computing in Cardiology 2017; VOL 44 Page 1 ISSN: 2325-887X  DOI:10.22489/CinC.2017.237-179 

  



determines an amplitude interval (THR_Search±δ; 

δ=0.13∙THR_Search) which identifies the following ECG 

fronts (Fig. 2): a down-going front in RS complex; an up-

going front and a down-going front in T wave; an 

horizontal front in P wave (which occurs when P-wave 

maximum is included in THR_Search±δ); and an up-

going front in QR complex. Too high values of 

THR_Search may lead to no T-wave front identification 

or to horizontal front identification in the T wave. In the 

latter case T wave is initially identified as a potential P 

wave, but is later rejected because too wide. When too 

high, THR_Search is decreased by 25% of its value until 

it becomes satisfactory or reaches its minimum value 

(after three consecutive reductions), indicating P-wave 

absence. When present, U wave is not identified as 

potential P wave because U-wave amplitude is too low. 

Potential P waves have horizontal fronts and undergo 

segmentation by identification of its maximum (Pmax; 

ms), its onset (Pon; ms) and its offset (Poff; ms). 

Specifically (Fig. 2), Pmax is identified as the instant 

where the ECG maximum within the horizontal front 

occurs; Pon is the instant that maximizes the distance 

between ECG and the segment connecting Pmax with the 

ECG point located 100 ms before Pmax; and Poff is the 

instant that maximizes the distance between ECG and the 

segment connecting Pmax with the ECG point located 70 

ms after Pmax. Eventually, P amplitude (Pamp; mV) is 

computed as ECG amplitude in Pmax minus the 

minimum between ECG amplitude in Pon and ECG 

amplitude in Poff, and P duration (Pdur; ms) is computed 

as Poff minus Pon. Once a potential P wave has been 

segmented, its amplitude and its duration must both fall 

within predefined ranges (Pamp=0.1÷0.4 mV, and 

Pdur=80÷100 ms) to be confirmed and thus, identified. 

 

2.2. Data 

AthrIA was tested in both simulated and experimental 

10 s ECG signals (sampling frequency: 250 Hz), pre-

processed using a technique based on the principal 

component analysis (only the first eigenvector projection 

was used) [13,14]. R peaks were detected through the 

Pan-Tompkins algorithm [1]. 

Simulation study. Four simulated ECG signals (Fig. 3) 

were designed to test AthrIA in different controlled 

conditions and created using the Matlab ECG simulator 

(http://it.mathworks.com/matlabcentral/fileexchange/108

58-ecg-simulation-using-matlab). Each InterRR of the 

first one reproduced the normal PQRST wave sequence; 

the second one also included the U wave (PQRSTU); the 

third one had no P wave (QRST); and the fourth one 

included two P waves (P-PQRST). Waves amplitudes and 

durations were the following: 0.2 mV and 90 ms for P-

waves, -0.5 mV and 40 ms for Q-waves, 3.0 mV and 110 

ms for R waves, -1.0 mV and 70 ms for S-waves, 0.4 mV 

and  140  ms  for  T-waves, and 0.05 mV and 50 ms for U 

 
 

Figure1. Block diagram of AThrIA, the proposed 

adaptive Threshold Identification Algorithm for P-Wave 

Segmentation. 
 

waves. In addition, all the simulated ECG were 

characterized by a heart rate (HR) of 75 bpm and no HR 

variability (HRV). Occurrence of P-wave onsets, maxima 

and offsets were known and thus considered as annotation 

references.  
Experimental study. Four experimental ECG signals (Fig. 

3)   were   selected   to   test   AthrIA   in   different   real  
 

 
 

Figure 2. Potential P-wave identification by AThrIA and 

subsequent P-wave segmentation. 
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conditions. The first one was acquired from a normal 

subject and showed normal PQRST waves; the second 

was also acquire from a normal subject, but the tracing 

also showed the U wave (PQRSTU); the third one was 

acquired from a patient who suffered of atrial fibrillation 

and the ECG tracing showed no P wave; eventually, the 

fourth one was acquired from a patient with a second-

degree atrioventricular block so that the ECG showed two 

P waves. HR were 72 bpm, 66 bpm, 88 bpm and 37 bpm, 

respectively; HRV were 10 ms, 48 ms, 227 ms and 28 ms, 

respectively. P-wave onsets, maxima and offsets were 

visually annotated by an expert and used as references. 

 

2.3. Statistics 

Corresponding annotated vs AThrIA derived 

parameters distributions were compared by means of the 

T-test for equal mean. Error (ε) in P-wave features 

computation was defined as absolute value of the 

difference between annotated and computed values.  
 

3. Results 

The results relative to AThrIA application to both 

simulated and experimental data are reported in Table 1.  

In both studies number of annotated P waves matched 

number of detected P wave (no false negative detections 

and no false positive detection).  

No statistically significant differences were observed 

between mean values of corresponding annotated vs 

identified P-wave parameters distributions. Errors relative 

to the simulation study were always better than or equal 

to corresponding errors in the experimental study. 

Specifically, errors relative to the identification of Pon, 

Pmax and Poff were always zero for the simulation study 

and, on average, smaller than 10 ms for the experimental 

study. Errors relative to Pamp were zero for both 

simulation and clinical studies. Eventually, errors relative 

to Pdur were zero for the simulation study and 10 ms or 

less for the experimental study.  

 

 
 

Figure 3. Three-second window of all ECG signals involved in simulation and experimental studies. 

 

Table 1. P-wave identification in simulation and experimental studies. Errors (ε) are reported as mean±standard deviation  

(n.a.: not applicable) 

 
 

  

Number of 

annotated 

P-wave 

Number of 

identified 

P-wave 

ε Pon 

(ms) 

ε Pmax 

(ms) 

ε Poff 

(ms) 

ε Pamp 

(mV) 

ε Pdur 

(ms) 

Simulated 

ECG 

Signals 

PQRST 11 11 0±0 0±0 0±0 0±0 0±0 
PQRSTU 11 11 0±0 0±0 0±0 0±0 0±0 

QRST 0 0 n.a. n.a. n.a. n.a. n.a. 
P-PQRST 10 10 0±0 0±0 0±0 0±0 0±0 

Experimental 

ECG 

Signals 

PQRST 10 10 3±3 0 ±0 4±2 0±0 3±4 
PQRSTU 10 10 3±3 2±2 3±3 0±0 4±4 

QRST 0 0 n.a. n.a. n.a. n.a. n.a. 
P-PQRST 10 10 8±5 2±3 7±6 0±0 10±9 
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4. Discussion 

This paper proposed AThrIA, a new adaptive threshold 

identification algorithm for ECG P waves. AThrIA, 

differently from other methods previously proposed in 

literature [3,8-10], searches the P wave all along the RR 

interval, by allowing identification of multiple P waves, 

when present. In this study, the method was tested in both 

simulated and experimental ECG tracings. Results 

indicate that P-wave identification occurred with no 

errors (no false-positive or false-negative detections). 

Segmentation points (Pon, Pmax and Poff) were 

compared to annotated values. In the simulation study 

annotations were set in the points where the waveforms 

used to model the P waves are connected to the baseline. 

Such connections perfectly determine the beginning and 

the end of the P waves but differ from the real cases in 

which transitions from baseline to P waves and vice versa 

occur gradually. In the experimental ECG tracings 

annotations were visually set by a human expert who may 

hardy distinguish points represented by two consecutive 

samples (4 ms). Despite the limitations in the annotations, 

AThrIA provided segmentation points identification with 

errors usually lower than 10 ms. Such precision is of the 

order of magnitude used for segmentation of other waves 

(for example T-wave offset) [4]. Thus, according to the 

present results, AThrIA appears as a promising tool for P-

wave segmentation and consequent atrial diseases 

classification (like atrial fibrillation, junctional blocks or 

atrial tachycardia) based on number of identified P waves 

in each heartbeat. Future studies on larger datasets 

characterized by different levels of noise and representing 

different ECG atrial diseases are needed to confirm the 

goodness of the preliminary results reported in the present 

methodological study. 

 

5. Conclusion 

AThrIA represents a promising tool for P-wave 

identification and segmentation in both physiological 

(one P wave) and pathological (none or multiple P waves) 

conditions.  
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