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Abstract

Level-crossing Electrocardiography (ECG) signal ac-
quisition provides many advantages with respect to power
consumption and memory requirements suitable for long-
term recording. In this paper, we investigated the delin-
eation accuracy of non-uniform ECG signals arising from
level-crossing sampling based on a hidden Markov model
(HMM) and compared the results with conventional, uni-
form sampling. Dedicated signal features were extracted
to emphasize the important ECG waves, i.e. the QRS-
complex, the P and the T-wave. The HMM-based segmen-
tation applied to annotated ECGs from the QT-database
showed comparable results for both sampling methods.
However, the delineation error of the R-peak observed in
the non-uniform data is smaller than in the uniform data
(3.2 vs. 4.0 ms) even for a lower average sampling rate (69
vs. 250 samples per second). Level-crossing sampling in
combination with HMM-based signal segmentation is in-
dicated to be a suitable tool for prolonged ECG recording
featuring high delineation accuracy.

1. Introduction

Atrial fibrillation is the most common heart rhythm dis-
order (arrhythmia) and is associated with severe outcomes
such as stroke. Short and rare episodes of irregular heart-
beats, e.g. paroxysmal atrial fibrillation, require long-term
ECG recording to establish the correct diagnoses along
with the therapeutic strategy.

The automatic detection and segmentation of the QRS
complex, P and T wave within the ECG is crucial to
analyze long-term recordings. However, ECG wave de-
lineation is affected by signal noise and artifacts result-
ing from muscle activity, cable and electrode motion.
Many researchers have proposed filter or model-based ap-
proaches such as wavelet transformation [1] or extended

Kalman filtering [2] to improve the delineation accuracy.
Unfortunately, the proposed algorithms assume a stringent
time relation between the less pronounced P and T wave
and the pre-detected QRS complex, which makes the de-
lineation of irregular heartbeats cumbersome.

Smart recorders such as wearable ECG patches, func-
tional clothes, or implantable loop recorders have recently
attracted much attention. They provide the advantage to be
leadless which may reduce signal artifacts. However, such
devices need to be highly memory- and power-efficient to
fulfill the space requirements at the site of application. In
the case of surface recorders, storage memory can be saved
by wireless communication within a body area network
with the drawback to give up the autonomy of the wear-
able recorder. Implantable recorders just store predefined
events. The online event detection in turn increases the
power consumption and reduce the reliability of the long-
term recording since the continuous ECG signal cannot be
screened offline.

Level-crossing sampling may provide a way out. In con-
trast to conventional, Nyquist-based (uniform) sampling, a
new sample is acquired only in case the input signal un-
dergoes a significant change. This activity-based sampling
is rather simple to integrate into low-power electronics [3]
and provides high memory efficiency when operating on
burst-like signals that are sparse in time, like the ECG
as shown in Figure 1. Furthermore, the characteristics
of non-uniform samples enables subsequent data compres-
sion stages to be very power-efficient [4]. Non-uniform
signal acquisition has already been used in applications
such as speech, ultrasound, and accelerometer processing
as well as to biomedical signals such as the online detec-
tion of the QRS complex [5].

In this paper, we focus on the offline processing of non-
uniform ECG signals. Due to the pseudo-periodic charac-
teristics of the ECG a model-based delineation based on
a Markov chain is feasible. We propose to use a time-
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Figure 1. ECG signal and sampling points obtained with
level-crossing sampling.

unconstrained hidden Markov model (HMM), that is, a
model with hidden states that represent the ECG waves
without knowing the wave boundaries a priori. HMMs are
widely used in pattern classification such as handwriting
recognition or keyword spotting [6] where the exact start
and end points of letters are neither known. The HMM ap-
proach has been successfully applied to ECG rhythm clas-
sification based on uniform samples [7], as well.

2. Methods

2.1. Hidden Markov Model

The HMM is a stochastic state machine based on a sta-
tionary and causal Markov chain and can be used to gener-
ate an observation sequenceO = [ok]1×K . The size of the
observation vector ok is related to the number of distinct
observation symbols representing the signal. A HMM can
be characterized by the subsequent parameter set:

Λ = (A,B,π),

where A = [aij = P (sjt |sit−1)]N×N is the matrix of
state-transition probabilities, B = [bjk = P (ok|sj)]N×K

the matrix of observation probabilities, and π = P (sit=1)
are the initial state probabilities, with N and K equals the
number of states and observations, respectively.

The HMM consists of hidden states S = [si]1×N . To
model the ECG signal, these states are interconnected such
that each state can be reached from any previous state,
named the Bakis model as depicted in Figure 2.

2.2. Emulator for Level-Crossing Sampling

The idea is to use annotated ECG signals derived from
a public-domain database. However, these ECGs are
uniformly sampled and need to be transformed to non-
uniform samples by a software-based emulation of the

level-crossing scheme. The emulator was implemented in
MATLAB (Mathworks, USA) and works as follows: First,
the powerline interference is suppressed with a Notch-filter
and a wavelet decomposition is applied to get rid of high
frequency noise. Second, the filtered signal commonly
sampled with 250 Hz is upsampled to 32 kHz to receive
an analog-like signal. Third, the level-crossing sampling
is applied with voltage resolutions dV = 1/2N mV where
N = {3.5, 4, 4.5, 5, 5.5, 6} bits/mV. A signal sample is
acquired only when the absolute voltage difference be-
tween the analog value and the previous non-uniform sam-
ple exceeds dV .

2.3. Feature Set

The data-set includes 23 ECG signals extracted from
the QT-database (physionet.org), each providing the first
120 heartbeats fully annotated. Apart from potential ST-
segment changes, we have selected physiological heart-
beats only. 33 features were extracted from non- and uni-
formly sampled ECG signals. The feature vector F for the
non-uniform data was defined as

~F =



dSi

ddSi

spi∑j
dSi∑j
ddSi∑j
spi

 =



Si+1 − Si

dSi+1 − dSi

±dV∑i+10j
i dSi∑i+10j
i ddSi∑i+10j
i spi

 ,
∀i ∈ [1,M ]
∀j ∈ [1, 10]

,

where S is the number of cycles, counted on the basis of
32 kHz, between two subsequent level-crossings that show

TP P PQ QR RS ST T

s1

a11

s2
a12

a22

sN
a2N

aNN

a1N

o1

b11

b21 bN1

oK

b1K b2K

bNK

· · ·

Figure 2. Overview of the model-based ECG segmen-
tation using one HMM for each ECG wave (top) and the
Bakis model with states si, output ok and corresponding
probabilities exemplary shown for the QR wave.
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either a positive or negative voltage step (equals sp). M
equals the total number of samples within one ECG. For
the uniform data, a similar feature vector was used replac-
ing the cycles S by the voltage amplitude V .

2.4. Implementation and Training

We used the toolkit (HTK) which is a portable library for
building and manipulating HMM. Although HTK is dedi-
cated to speech recognition, it can be used to segment ECG
signals, as well. Each ECG wave (P wave, PQ segment,
QR wave, RS wave, ST segment, T wave and TP seg-
ment) correspond to a word in speech. The ECG waves are
linked with the left-right HMM topology shown in Figure
2 representing a physiological heartbeat. The concatena-
tion of multiple heartbeats reproduce the pseudo-periodic
ECG signal as a whole.

The HMM parameter set was estimated with the Baum-
Welch method [8] (expectation-maximization method).
Each of the 7 HMMs (see Figure 2) was trained on its re-
spective ECG wave using the first 60 annotated heartbeats
of each ECG record individually. The number of states
representing each ECG wave was dependent on the num-
ber of samples or the duration of the wave in case of non-
uniform and uniform data, respectively. It should be noted
that we artificially increased the number of data points to a
minimum number of 250 per second such that the training
was adequate for ECG waves featuring a few non-uniform
samples only. Observation sequences were modeled as a
mixture of three Gaussian functions.

2.5. Testing and Performance Evaluation

The second half of each ECG record containing 60 an-
notated heartbeats was used as test data. With the Viterbi
algorithm [8], we got the most likely sequence of states
given the observation sequence, i.e. the non-uniform or
uniform data. This sequence of states is then transformed
into subsequent ECG waves and subsequent heartbeats.

We evaluated the on- and offsets of all ECG waves with
respect to the reference annotations. The R-peak detected
as the transmission between QR and RS wave was com-
pared to the amplitude peak searched within an interval of
±50 ms around the reference annotation. Statistical com-
parisons were done with the Wilcoxon signed rank test for
paired probes using a significance level of 5% and Bonfer-
roni correction for multiple testing.

3. Results

Figure 3 shows the evaluation of the trained HMM ap-
plied to the 23 ECG signals containing 60 testing heart-
beats each. The delineation error (median ± iqr) between
the R-peak, onset and offset of detected ECG waves and

the reference annotations is illustrated for both, the non-
uniform and uniform samples.

Non-uniformly sampled ECG signals exhibit a total de-
lineation error that is slightly affected by the average sam-
pling rate. The error decreases from 6.1 ± 6.2 ms to
5.7 ± 5.5 ms with increasing sampling rate and accord-
ingly increasing sampling resolution, but is not different
to the total error of 6.1 ± 3.8 ms achieved with uniform
sampling (all p > 0.03).

Having a closer look on the individual wave segmen-
tation, we observe that the QRS complex comprising QR
and RS waves is more accurately delineated than the two
other ECG waves, in particular the T wave. The R-peak
localization shows an error of 3.2 ± 0.8 ms for the low-
est sampling resolution N = 3.5 bits/mV that decreases
to 1.1 ± 0.7 ms for N = 6 bits/mV. Regardless of the
non-uniform sampling resolution, the localization is more
accurate as compared to the uniform ECG samples having
an error of 4.0 ± 0.9 ms (all p < 6 · 10−5). T-offset man-
ifests the highest delineation error of 15.2 ± 20.5 ms and
8.4±12.1 ms at sampling resolutions of N = 3.5 bits/mV
and N = 6 bits/mV, respectively. However, the error ob-
served with uniform ECG samples is in a similar range,
11.7± 14.3 ms.

The distribution of the sampling points among the ECG
signal changes with level-crossing sampling. The aver-
age number of sampling points observed within the non-
uniform QRS complex is 2 to 12 times higher - depending
on the sampling resolution - than for the uniformly sam-
pled counterparts containing 26 sampling points on aver-
age. In contrast, the non-uniform idle segments (PQ, ST,
TP segment) contain less sampling points (around 2 to 85
times less) compared to uniform samples.

4. Discussion & Conclusion

We have successfully applied a dedicated HMM topol-
ogy using the HTK toolbox for segmenting non-uniformly
sampled ECG signals into its elementary waves. The R-
peak, ECG wave onset and offsets have been evaluated and
compared with reference annotations.

With respect to the segmentation of the entire heart-
beat, we note that the delineation error resulting from non-
uniform samples was comparable to that of uniform sam-
ples. However, the average sampling rate with resolution
N = 3.5 bits/mV drops more than 70% from 250 to 69
samples per second. Level-crossing sampling concentrates
the acquired values within a heartbeat on signal portions
with a steep slope. On- and offset of the QRS complex, the
P and T wave as well as fast changes within these waves
are emphasized. In contrast, the PQ, ST, and TP segment
produce much less samples. This behavior supports a more
specific training of the HMMs reducing the required sam-
ples. The lowest error can be found for the QRS complex
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Figure 3. Median error and interquartile range as a function of the average sampling rate (lower x-axis) and corresponding
sampling resolution (upper x-axis) of the R-peak, ECG wave onsets and offsets of the non-uniformly sampled signals
(non-filled markers). For comparison, the result of the HMM applied to uniform samples (filled markers) is shown.

delineation due to its steep slope resulting in a very high
number of sampling points, i.e. a low time interval be-
tween the non-uniform samples. In contrast, the largest
error was observed for the T-offset. This is most likely as-
sociated with the poor reference annotations and is not re-
lated to the HMM-based segmentation. The error observed
for the uniform samples is in the same range.

In summary, HMM-based delineation of non-uniformly
sampled ECG signals shows a high accuracy even for low
average sampling rates. Future investigations will consider
time-constraint states (e.g. by the duration of ECG waves)
to improve the delineation further. We also will apply the
HMM based segmentation on ECG signals with atrial fib-
rillation. This can be achieved by testing various heart-
beat models with a different number and order of HMMs
(ECG waves) than shown in Figure 2 and choosing the
most likely model for a given ECG sequence.
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