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Abstract

Genetic model organism have the potential of increas-
ing the understanding of malicious human genotypes and
deregulated molecular processes. In this context, an ad-
equate high-level characterization of experimental results
is a necessary requirement for a successful trans-species
transfer. In classification experiments, we analyze the gene
expression profiles of six heart failure phenotypes of the ze-
brafish danio rerio. We train semantic multi classifier sys-
tems that directly provide a high-level hypotheses on the
underlying processes.

1. Introduction

The molecular underpinnings of human heart failure are
poorly defined, mainly due to significant mortality, low
percentage of familial forms and limited access to cardiac
tissue. Genetic model organisms like, mice and zebrafish
can support the understanding of the genetic etiology of
this disease. Selection of molecular markers and pathways
is an essential step in the identification of possible disease
causes at the molecular level.

We present a semantic multi-classifier system, which in-
corporates existing domain knowledge in the biomarker se-
lection process. We construct interpretable marker subsets
by using known relationships of measurements to higher-
level terms such as pathways, e.g. P53-signalling. The sub-
set is then used for training an expert (or base classifier).
Vocabularies for these high-level terms are extracted from
databases like KEGG [1] and Gene Ontology [2]. Our se-
mantic multi-classifier system then selects the subset of
terms with highest performance, see Figure 1.

2. Methods

Classification. A classifier is a predictive model that pre-
dicts the class label (e.g. phenotype) of an object y € Y
according to a set of measurements x € R". It is typically
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Figure 1. Classification and semantic integration scheme.
Measurements and meta-information are integrated via a
mixture of experts approach. Meta-information defines
the features for the base classifiers and serves as a means
of process identification. Final predictions are performed
through majority votes.

adapted in a data-driven procedure and afterwards tested
on an independent set of test samples. The training of a
classifier system is typically coupled to an internal feature
selection process in order to increase the interpretability of
the final classification model [3]. It can be used for gener-
ating hypotheses on the underlying mechanisms leading to
a specific phenotype.

In this work, we concentrate on the one nearest neigh-
bor classifier (1-NN) [4]. The 1-NN identifies the training
sample closest to the query sample (Euclidean distance).
The label of this nearest neighbor is used as a prediction of
the query sample’s class label. More precisely, we apply
a majority vote ensemble based on three 1-NN classifiers
operating on different data representations, which will be
selected in a semantic biomarker selection process [5]. An
overview of the complete classification scheme is given in
Figure 1.
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Semantic Biomarker Selection. Semantic biomarker se-
lection incorporates existing domain knowledge in the pro-
cess of generating reduced marker sets [5, 6]. It assumes
that the components of high-level processes such as signal-
ing pathways are known a priori. The semantic biomarker
selection process receives a vocabulary of high-level terms
and restricts the feature space to those components. The
prediction model can subsequently be directly interpreted
via the terms selected. In our experiments, the three terms
with the individual best accuracies (3 x 3 nested cross-
validation [7]) were chosen for the ensemble classifier. As
a vocabulary KEGG-pathways were utilized.

KEGG-Pathways. The Kyoto Encyclopedia of Genes
and Genomes (KEGG) provides a catalog of known sig-
naling pathway for different model organisms [1]. In
case of danio rerio, it comprises 162 signaling pathways.
Here, we restricted ourselves to those pathways for which
our dataset provides more than 10 components (146 path-
ways).

2.1. RNA Sequencing Data

RNAs from 26 different heart failure zebrafish mutant
lines identified in large-scale ENU-mutagenesis screens
were isolated and subjected to RNA Sequencing. Each
sample represents the pool of at least 25 zebrafish embryos.
Embryos were phenotyped and collected between 48 and
120 hours post fertilization (hpf).

An overview on the sample collection can be found in
Table 1. Each sample is represented by an RNA-Seq pro-
file of 31953 features (genes). The dataset comprises 180
samples of 26 distinct genotypes. Overall 90 mutants and
90 controls are available. For each genotype at least 3
mutants and 3 controls were collected. For our analysis,
the samples were regrouped into coarser (partially overlap-
ping) phenotypical categories (mutant/controls), for each
RNA sequencing was performed:

a) bradycardia/arrythmia (24/24): 7 different zebrafish
mutant lines displaying severely reduced heart rates
(bradycardia) and/or arrhythmia (atrial fibrillation, AV
blocks).

b) heart development (66/66): 19 different zebrafish mu-
tant lines displaying developmental heart defects such as
defected heart chamber morphogenesis, cardiac differenti-
ation, cardiac maturation.

c) heart valve defect (18/18): 6 different zebrafish mutant
lines displaying defective heart valve formation.

d) hypoplasia (27/27): 8 different zebrafish mutant lines
displaying reduced heart growth/reduced cardiomyocyte
numbers due to diminished cardiomyocyte proliferation.
e) myofibrillogenesis defects (30/30): 7 different zebrafish
mutant lines displaying defective myofibrillogenesis and
myofibrillar organisation.

f) weak contractility (81/81): 23 different zebrafish mu-
tant lines displaying severely reduced cardiac contractile
functions.

Table 1. Overview on the analyzed dataset. The
dataset consists of 180 samples of 26 individual genotypes
(rows). The genotypes are named according to their ob-
servable heart beat. For each genotype the number of (mu-
tants/controls) is reported. The genotypes were grouped
into 6 overlapping phenotypes (columns).

arrythmia (24/24)
heart defects (66/66)
myofibrillogenesis
defects (30/30)

(18/18)
(81/81)

samples(90/90)
baldrian (3/3)
beach bum (3/3)
breakdance (3/3)
bungee (3/3)

dead beat (3/3)
flatline (3/3)

heart of stone (3/3)
herzbuckel (3/3)
island beat (6/6) X
lazy susan (3/3)
liebeskummer (3/3) X

lost contact (3/3)

main squeeze (3/3)

ping pong (3/3) X X X
reggae (3/3)
schneckentempo (3/3)
schneeball (3/3)

steif (3/3)

silent heart (3/3)

tell tale heart (3/3)

titin (12/12)

titin-heart specific (3/3)
trapped (3/3) X
weak atrium (3/3)

weiches herz (3/3) X
windbeutel (3/3)
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3. Experimental Setup

The classifiers are tested in 10 x 10 cross-validation ex-
periments [7]. That is the overall set of samples is split
into ten folds of approximately equal size. Nine of these
folds are used to train a classification model. The tenth
fold is used as an independent test set. The procedure is
repeated for each fold and the average accuracy, sensitiv-
ity, specificity are reported. Cross-validation is repeated
for ten permutations of the set of samples. Experiments
were performed with the TunePareto Software [8].

4. Results

The result of the 10 x 10 cross-validation experiments
are given in Table 2. Accuracies, sensitivities (mutant)
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and specificities (control) are shown. In general, the an-
alyzed dichotomies (mutant/control) achieved high classi-
fication accuracies of 95.7% or higher. An exception is the
bradycardia/arrythmia phenotype with a lower accuracy
of 87.3%. Similar observations hold for sensitivities and
specificities.

Table 2 additionally provides the three most frequently
selected terms. For all phenotypes despite of the bradycar-
dia/arrythmia phenotype, high-level terms could be iden-
tified that were selected in more than 93.0% of the cor-
responding experiments. For the general discrimination of
mutant and control phenotypes the terms farty acid elonga-
tion (93%), butanoate metabolis (92.0 %) and biosynthe-
sis of unsaturated fatty acids (44.0 %) were selected most
frequently. The term fatty acid elongation was passed to
six individual phenotypes (> 79%). Butanoate metabo-
lis can be found in three other phenotypes (> 55.0%) and
biosynthesis of unsaturated fatty acids in four (> 58.0%).
The experiment with the individual phenotypes revealed
five additional frequently selected terms: beta-Alanine
metabolism, dorso-ventral axis formation, insulin signal-
ing pathway, melanogenesis, tyrosine metabolis.

5. Discussion & Conclusion

In this work, we analyzed RNA-seq profiles of six differ-
ent heart failure phenotypes gained of the model organism
danio rerio. Our semantic multi classifier systems were
able to achieve high accuracies (> 87.3%) for all analyzed
dichotomies. The performance of the classifier systems
were coupled to stable term selections. Individual terms
were selected in up to 100.0% of the experiments. In this
way the semantic multi classifier systems generated new
high-level hypotheses for the individual phenotypes, which
could not be derived by purely data-driven analysis.

An detailed analysis of the found high-level terms and
pathways is still ongoing work. The gene sets and the in-
dividual genes associated to these pathways are currently
being investigated by additional wet lab experiments. Nev-
ertheless, additional support and evidence can be found in
the literature.

One of the most striking results is that the “Fatty Acid
Elongation” KEGG-term seems to play a central role in
discriminating mutation from not mutated specimens. This
might be linked to w — 3 fatty acids. Also there exist rec-
ommendations from the American Heart Association on
the consumption w — 6 polyunsaturated fatty acids due
to its risks in cardiovascular diseases [9]. The benefit of
w — 3 fatty acid supplementation is controversially dis-
cussed [10]. Several reviews on this topic exist [11, 12].
Jump et al. [12] report on the influence of polyunsaturated
fatty acids on pathways that are involved in the regulation
of blood lipids, inflammatory factors and the cellular pro-
cesses in cardiomyocytes and vascular endothelial cells.

Table 2. Results of the 10 x 10 cross-validation exper-
iments. The average accuracy, sensitivity (mutation) and
specificity (control) is reported. Additionally the three
most frequently selected KEGG-pathways are reported
(%).

Mutation (90/90)
Acc: 96.3% Sens: 94.9% Spec: 97.7%
1. Fatty acid elongation (93.0 %)

2. Butanoate metabolism (92.0 %)

3. Biosynthesis of unsaturated fatty acids (44.0 %)

Bradycardia/Arrythmia (24/24)
Acc: 87.3% Sens: 82.5% Spec: 92.1%

1. Tyrosine metabolism (60.0%)
2. beta-Alanine metabolism (35.0%)
3. Insulin signaling pathway (34.0%)

Developmental heart defects (66/66)
Acc: 98.7% Sens: 98.3% Spec: 99.1%

1. Fatty acid elongation (98.0 %)
2. Biosynthesis of unsaturated fatty acids (93.0 %)
3. Butanoate metabolism (55.0 %)

Heart valve defect (18/18)
Acc: 100.0% Sens: 100.0% Spec: 100.0%

1. Fatty acid elongation (100.0 %)
2. Tyrosine metabolism (100.0 %)
3. Dorso-ventral axis formation (22.0 %)

Hypoplasia (27/27)
Acc: 95.7% Sens: 95.9% Spec: 95.6%
1. Fatty acid elongation (100.0 %)

2. Biosynthesis of unsaturated fatty acids (58.0 %)

3. Melanogenesis (54.0 %)

Myofibrillogenesis defects (30/30)
Acc: 100.0% Sens: 100.0% Spec: 100.0%

1. Biosynthesis of unsaturated fatty acids (95.0 %)
2. Fatty acid elongation (79.0 %)
3. Butanoate metabolism (70.0 %)

Weak contractility (81/81)
Acc: 98.5% Sens: 98.5% Spec: 98.4%

1. Fatty acid elongation (99.0 %)
2. Butanoate metabolism (97.0 %)
3. Biosynthesis of unsaturated fatty acids (71.0 %)

Riehle and Abel provide a review on insulin signaling
and heart failure in homo sapiens [13]. In humans, heart
failure is associated to insulin resistant states such as type
2 diabetes and obesity. In cardiomyocytes, changes in in-
sulin signaling lead to the failing heart. Gao et al. showed
that insulin sensitivity is increased in mice that receive a
high-fat diet (butyrate) and counteracts insulin resistance
phenotypes [14]. DeBosch and Muslin review the influ-
ence of insulin signaling pathways on cardiac growth [15].

The [ alanine metabolism is known to play an impor-
tant role in the training of the skeletal muscle [16]. Its
influence on the heart muscle is investigated by dietary
[ alanine presupplementation in rats [17]. The respective
animals showed a 57% reduction in infarct size to risk area
ratio [18].
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The semantic multi classifier model proposed in this
study is prototypical. It can be extended in different ways.
Especially alternative sources of domain knowledge can
be utilized, which focus on different aspects of the pheno-
types analyzed. Other specialized data bases might reveal
additional processes that are not reflected in the KEGG
database. A subsequent step is can be the transfer to differ-
ent model organisms and may help to shed light on specific
heart failure processes.
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