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Abstract

We classified perinatal cardiotocography (CTG) records
according to their outcome severity using long short-term
memory (LSTM) recurrent neural networks. Our classi-
fier classified pathological with 44.7% sensitivity (Se) and
55.3% positive predictive value (PPV), while normal cases
had 40.0% Se and 46.7% PPV. The more difficult interme-
diate MA cases had 33.5% Se and 29.3% PPV.

1. Introduction

Labour and delivery is monitored electronically with
sensors that measure and record maternal uterine pressure
(UP) and fetal heart rate (FHR), a procedure referred to as
cardiotocography (CTG). The objective of this monitoring
is to detect the fetus at substantial risk of hypoxic injury so
that intervention can prevent its occurrence.

We wanted to classify cardiotocography (CTG) records
according to their outcome severity. In this study, our fea-
tures included the orthogonal components from Karhunen-
Loève (KL) decomposition, an indication of UP-FHR it-
eraction via their mutual information, several baseline
trends, and an indication of signal quality. As a classifier
we used several layers of long short-term memory (LSTM)
recurrent neural networks.

Other works have used attempted to classify perinatal
CTG records using feedforward neural networks [1,2], and
we have used Support Vector Machines [3] for this task.
These approaches are generally static in that they tend to
consider one sliding window at at time. We hypothesized
that the ability of LSTMs to include recent and distant his-
tory could be beneficial to this problem.

2. Data

We used CTGs from singleton, term pregnancies having
no known congenital malformations, with at least 90 min
of tracing just prior to delivery. 70 the cases were normal
(N), 71 had developed MA (umbilical cord base deficit ≤

12 mmol/L) and 47 severely pathological (P) fetuses. The
data come from hospitals that did routine umbilical cord
blood gas measurements.

3. Methods

3.1. Preprocessing

The CTG data was recorded at 4 Hz in a clinical set-
ting, so it was subject to specific types of noise. The loss
of sensor contact can temporarily interrupt the UP or FHR
signals, and interference from the (much lower) maternal
heart rate can corrupt the FHR. These both appeared in the
signal as a sharp drop to much lower amplitude followed
by a sharp signal restoration. As described in [4], we pre-
processed the data to bridge interruptions with linear in-
terpolation. The resulting signals where then decimated to
0.25 Hz to reduce feature and training computational re-
quirements.

3.2. Feature calculation

Features were derived from a median-detrended FHR
signal decomposed by the Karhunen-Loève (KL) trans-
form, the mutual information (MI) of the UP-FHR signal
pair and an indication of signal quality where the prepro-
cessing had bridged the data. We also the median signal,
the detrended high pass and its complement low-pass sig-
nal.

For the KL decomposition, we retained 8 components
corresponding to the highest eigenvalues. The associated
eigenanalysis used observation vectors from 40 s sliding
windows.

We calculated MI for both the preprocessed UP and
FHR signal pair u(t) and f(t) as well as their instanta-
neous phases φu(t) and φf (t) as described in [5] . Bin-
ning was used for the probability densities p(u), p(f) and
p(u, f) required for the MI calculation. Surrogate UP-
FHR pairs generated by the amplitude-adjusted Fourier
Transform technique were used to test MI significance.
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Class n n(%) Se(%) PPV(%)
N 70 37.2 40.0 46.7
MA 71 37.8 33.8 29.3
P 47 25.0 44.7 55.3
Total 188 100.0

Table 1. Number, proportion and classification results by
class

3.3. LSTM classifier

The LSTM networks of this study are recurrent, and
their feedback connections allow recent events to be stored
in the form of internal activations. Back-propagation
through time (BPTT - [6]) and Real-time recurrent learn-
ing (RTRL - [7]) have been the conventional algorithms for
learning what to put into the short-term memory, but they
require long learning times or do not work at all [8]. In ad-
dition they fail to bridge gaps in the more distant past (ie.
greater than 10 steps) due to back-propagated error signals
that either vanish (causing long learning times) or explode
(causing oscillating weights).

LSTM overcomes error back-propagation problems by
using a gradient based algorithm (using elements from
both BPTT and RTRL) whose error flow through its in-
ternal states is forced to be constant (rather than exploding
or vanishing). The basic LSTM unit is a memory block
containing one or more memory cells and three multiplica-
tive and adaptive gating units shared by all cells in the
block. These input, forget and output gates learn to con-
trol, respectively, what input information to store in the
memory, how long to store it and when to release it to
the output. The internal memory is provided by a recur-
rently self-connected linear unit that can recirculate acti-
vation and error signals indefinitely, providing short term
memory storage for extended periods of time.

The classifier was implemented in Python using the
Keras library with a TensorFlow backend, which provides
efficient functionality on CPUs and GPUs.

3.4. Training

The LSTM neural network was trained using the fea-
tures as inputs and the outcome class (N, MA or P) as tar-
gets at each timestep. The final prediction generated by the
trained neural network classified each recording. Ten-fold
cross-validation used training, validation and testing fold
partitions.

Efficient batch-oriented training requires fixed-length
input; therefore we defined a maximum length,max length,
equal to 5 hrs, for the CTG signals in the dataset. Each
CTG signal that had a length less than max length was
end-padded with zeros. A zero label was also added to
the sequence of labels to be referred as PAD class. Sam-

ples of this class did not contribute to the training loss.
On the other hand, those CTG signals that are longer than
max length were split into multiple sequences in such
that each new sequence length was less than or equal to
max length.

We used 10-fold cross validation for training which in-
cluded train, validation and test partitions. The eigenanal-
ysis was performed per-fold on the training set and ap-
plied to the validation and test sets. Similarly, per-fold
normalization for zero-mean and unit standard deviation
was computed for the training data and then applied to the
other sets. To overcome gradient-based training suscepti-
bility to local minima, we trained multiple (2) neural nets
per fold with randomized initial weights.

Batch training was done on the approximately 150 train-
ing sequences with 80 parallel sequences per “mini-batch”.
The LSTM network architecture included three hidden lay-
ers of 75, 150, and 50 cells, respectively. The 12 features
were applied to the input layer and the output layer used
a softmax activation function followed by a cross-entropy
objective function for the classification. Other parameters
were set to the Keras default values. Training continued for
each batch epoch until the overall objective error function
did not improve on the validation set after 20 epochs (i.e.,
early stopping). The neural network with the best perfor-
mance on the validation set was retained for use with the
test set.

3.5. Evaluation

Evaluation was based on performance on the test set,
whose independence was ensured by restricting all tuning
parameters (eigenanalysis, normalization, network archi-
tecture and weights, early stopping, etc.) to observation of
training and validation sets alone, as described above. An
CTG was deemed correctly classified if its final prediction
match the outcome target and we used this to measured
sensitivity (Sens, also known as ’recall’) and positive pre-
dictive value (PPV, also known as ’precision’).

4. Results

Table 1 shows test classification results over all records.
P cases were best classified with 44.7% sensitivity (Se) and
55.3% positive predictive value (PPV), while N cases had
40.0% Se and 46.7% PPV. The more difficult intermediate
MA cases had 33.5% Se and 29.3% PPV.

5. Conclusions

Predicting fetal outcome is a difficult problem and we
have made several simplifying assumptions. Most impor-
tantly, we have not considered that the fetal state changes
with time: using outcome data sampled just after birth
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gives reasonable targets for late labour, but applying these
same targets throughout labour likely confused the learn-
ing process. We will adopt strategies to account for this in
future work.
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