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Abstract

Chronic kidney disease appears worldwide. In the
United States, the number of patients suffering from kid-
ney failure doubled from 1998 to 2010. A common treat-
ment for these patients is haemodialysis. However, the
frequency of deaths caused by cardiovascular diseases is
up to 10% to 30% higher in patients undergoing dialysis
than in the general population. To analyse the underly-
ing effects and for a possible risk prediction, a continuous
monitoring of the ionic concentrations that are influenced
by dialysis is desired. In this work, a method for the re-
construction of the ionic concentrations of calcium and
potassium from the ECG is proposed. In a first step, 91
monodomain simulations with the ten Tusscher ventricular
cell model were performed for different extracellular ionic
concentrations. From there, a standard 12-lead ECG was
extracted. Calcium and potassium changes yielded ECGs
clearly differing in amplitude and morphology. In a second
step, the simulated ECG signals were used for reconstruc-
ting the ionic concentrations directly from the ECG. Fea-
tures were extracted from the signals designed to describe
changes caused by varied ionic concentrations. The in-
verse problem, i.e. coming back from the ECG features to
the ionic concentrations was solved by regression with an
artificial neural network. Results for potassium estimation
yield an error of 0.00+£0.28 mmol/l (mean=+standard de-
viation) calculated with 7-fold cross validation. The esti-
mation error for calcium was 0.00+0.08 mmol/l. Although
these results underline the suitability of the method, the
used ECGs differed from the observed in a clinical envi-
ronment. However, simulations allow an evaluation un-
der controlled conditions of a particular effect that was
intended to be investigated. As the application to clinical
data is yet missing, this study can be seen as a proof of
concept showing that an artificial neural network is capa-
ble of exactly estimating potassium and calcium concen-
trations from ECG features.
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1. Introduction

Haemodialysis therapy is a common treatment method
for patients suffering from chronic kidney disease (CKD)
in the terminal stage. The amount of people in the
United States suffering from kidney failure increased from
320,000 in 1998 to 650,000 in 2010. The frequency of
deaths caused by cardiovascular events within the dialysis
patient group is up to 10% to 30% higher than in gene-
ral population [1]. Patients suffering from end-stage CKD
experience high variations of blood electrolyte concentra-
tions. These can directly influence the functioning of the
heart. Thus, research on cardiovascular links could im-
prove therapy and risk stratification. One tool which is
capable of capturing the electrophysiological properties of
the heart in a non-invasive way is the electrocardiogram
(ECG). It is known, that electrolyte concentrations of po-
tassium (K1) and calcium (Ca?1) affect the ECG [2]. Un-
til now, a determination of the concentrations is connec-
ted to a blood test. Hence, continuous monitoring of the
ionic concentration is impracticable. However, the ECG
as a continuous, non-invasive monitoring tool could shed a
light on the relation between heart diseases and changes
in the ionic concentration particularly after leaving the
strictly supervised clinical area where dialysis takes place,
i.e allowing a monitoring at home. Articles have been pub-
lished showing that the reconstruction of extracellular K+
concentration can be done using just one feature from the
ECG with a quadratic regression [3]. In this study, we
tried to estimate both K* and Ca?* concentrations from
the ECG. Therefore, we examined simulated ECGs at dif-
ferent concentration levels and designed features descri-
bing the observed changes in the ECG. A subset of these
was used in connection with a machine learning method to
reconstruct the concentrations.

2. Methods
2.1. Simulations

A total number of 91 computer simulations of the car-
diac electrophysiology were performed at whole heart
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level. In the ten Tusscher ventricular cell model [4], the
extracellular KT concentration ([K*],) is set to 5.4 mmol/l
and the extracellular Ca?t concentration ([Ca®*],) to
2.0mmol/l by default. In this study, [K*], was var-
ied between 3mmol/l and 9 mmol/l, [Ca®*], between
0.6mmol/l and 3mmol/l in equally distributed steps.
These ranges were also used in a previous simulation study
evaluating changes in the atria and cover the clinically
observed ranges [5]. Monodomain simulations and sub-
sequent forward calculations using a torso model includ-
ing various organs with different conductivities were per-
formed with our simulation environment using an estab-
lished model [6]. The standard 12-lead ECG was extrac-
ted with a samplerate of 1000 Hz. Each computed ECG
comprised a QRS complex and a T wave, but no P wave,
since this was only a ventricular simulation. To calculate
a feature value from the 12-lead ECG, the lead reduction
method proposed in [7] was used. The transformation mat-
rix was calculated by maximising the amplitude of a given
part of the ECG, e.g. the T wave.

2.2. Reconstruction of ionic concentrations

As an input for the regression method, features were
extracted from the ECG. Simulated ECGs for different
[Ca®*], and [K*], are plotted in figures 1 and 2. Changes
caused by different ionic concentrations in the simulated
ECGs were evaluated visually and features capturing these
changes were designed (see figure 3). The canonical cor-
relation analysis (CCA) was used to reduce features. The
following features were used for the regression task: RT
distance, T ascending slope, T descending slope, T ratio
Ist half (ratio of energy of the first half of the T wave to
the energy of the whole wave), R ratio amplitude to en-
ergy. The features T amplitude and T peakedness (2nd or-
der coefficient of the quadratic fit for the peak of the T
wave) were detected to be redundant by CCA. The 12-lead
ECG signals were transformed twice: Features regarding
the QRS complex were calculated from the transformed
signal that maximised R peak amplitude, features regard-
ing the T wave from the transformed signal maximising T
wave amplitude.

A Bayesian neural network with early stopping [8] was
chosen for reconstructing the ionic concentrations from the
simulated ECGs. The implementation in MATLAB’s Ma-
chine Learning Toolbox was used (MATLAB 2016b, The
MathWorks, Inc., Natick, Massachusetts, United States).
During training, randomly chosen setups were used for
evaluating the early stopping criterion. If the error in-
creased for 6 iterations, the training was stopped. The
number of neurons and layers were chosen empirically.
We allowed a maximum of 2 layers with up to 15 neu-
rons in each layer. The estimation error was determined
for each data partition of a 7-fold cross validation to eval-

uate every possible network structure. Minimising the es-
timation error for each cross validation partition yielded 7
different optimal network structures for the available data.
The structure that was chosen most often was finally se-
lected. If there were two or more structures equally often
chosen, the one with the least neurons was selected. With
the optimal setting of layers and neurons per layer, the re-
sulting network was evaluated again with 7-fold cross vali-
dation using the same data partitions as before. The setups
used for the early stopping criterion were taken from the 6
cross validation training data groups left. Hence, the neu-
ral network was trained with the remaining 5 cross valida-
tion groups. Each group from the training data was used
once as early stopping validation data and omitted for ac-
tual training. This yielded 91 x 6 (546) error values for
each ion type. The training and the described evaluation
was conducted 100 times, since artificial neural networks
tend to run in a non-global local minimum during weight
optimisation.
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Figure 1. Simulated ECGs of different [K*], after lead
reduction ([Ca%**],=1.8 mmol/l).
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Figure 2. Simulated ECGs of different [Ca?*], after lead
reduction ([K*],=5.5 mmol/l).

3. Results

The optimal neural network structure was found to be
one layer and six neurons. The [K*], and [Ca?*], estima-
tion errors for cross validation data, early stopping data and
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Figure 3. Features obtained from the ECG signals. The
remaining features after reduction are underlined.

training data are displayed in the boxplot in figure 4. The
statistics of the cross validation errors of all 120 iterations
yielded 0.00+0.28 mmol/l (mean4-standard deviation) for
[K*], estimation and 0.00-+0.08 mmol/l for [Ca2*], esti-
mation.
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Figure 4. [K*], and [Ca”*], estimation errors of different
data sets: Cross validation data (Xv.), Training data (Tr.)
and early stopping criterion data (ES.). The red horizontal
line is the median, the blue box determines the interquartile
range. Outliers are not plotted.

4. Discussion

4.1. Simulation method

In this work, the ten Tusscher ventricular cell model was
selected as one of a few human ventricular cell models
with an advanced Ca®* handling. Nevertheless, the O’Hara
Rudy model offers a similarly sophisticated implementa-
tion, but it does not yield action potentials for [K*], as
low as used here [9]. Himeno et al. [10] proposed a human
ventricular cell model that offers a more realistic behaviour
regarding a changed [Ca®*],.

Although changes in the ECGs dependent on [Ca®*],
and [K*], were clearly visible, limitations regarding the
accuracy of the ECGs were discovered during the study:
A prolongation/shortening of the QT interval, that is of-
ten seen in a clinical environment and that was descri-
bed in [2], could not be reproduced for severe hypo-
calcaemia/hypercalcaemia, respectively. The simulations
showed exactly the reverse effect. An imbalance of [K*],
resulted in a change of the ECG that is partly in accord-
ance to literature. In [11], changes due to hyperkalaemia
were identified: an increase of the peakedness and am-
plitude of the T wave and a widening of the QRS com-
plex. All phenomena were visible in the simulated ECGs
but changes were partly not as prominent as visualised in
[11]. In [2], a decrease of the QT interval is also named as
a marker for hyperkalaemia. In this study, an increase of
[K*], showed a reverse effect on the comparable marker
RT interval. However, it is well-known that a change of
the QT interval can have different reasons. In addition, in
[2], it is stated that hypokalaemia induces ST depression,
T wave inversion and T wave amplitude decrease which
could not be reproduced here.

Some further effects could not be evaluated, since the
simulation method was not able to account for them. In
this particular simulation study, the Purkinje fibres were
not directly modelled. Rather, a phenomenological mo-
delling neglecting the influence of changed ionic concen-
trations [12] was used. Moreover, changes in atrial elec-
trophysiology could not be evaluated because a ventricular
cell model was used. However, P wave changes are re-
ported in [13]. Changes in the conduction properties of
the AV node described in [2] were also not reproducible.
In addition, arrhythmia triggering phenomena caused by
a changed [K*], (as reported in [2]) could not be ob-
served. Possible inter-subject changes on the anatomical
and physiological level could not be reproduced in the sim-
ulations since just one anatomical and physiological model
was used. As some changes visible in clinical routine
are patient dependent, the main advantage of a simulation
study is underlined: it offers the opportunity to eliminate
all other factors and focus on the pure influence of the ones
to be evaluated. So, the pure effects caused by the changed
ionic concentrations were analysed and described.

4.2. Regression method

An artificial neural network was shown to be an appro-
priate regression method for the reconstruction of the ionic
concentrations from the ECG. The standard deviation of
the [K*], estimation error was 0.28 mmol/l. This is a small
value compared to both the [K*], concentration steps in
the simulations which were about 0.42 mmol/l and the total
range of [K*], of 6 mmol/l. The standard deviation of the
[Ca%*], estimation error was 0.08 mmol/l which has to be
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seen alongside the [Ca** ], steps of 0.20 mmol/l and the
total variation of 2.4 mmol/I.

The problem of overfitting can always appear in the
field of machine learning. Although regularisation meth-
ods were applied and the network structure was relatively
simple, we cannot exclude overfitting for sure. The prob-
lem arises in the form of a bad performance on unseen data
compared to the training data. So we tried to quantify this
by also evaluating the training data with the proposed neu-
ral network. Comparing the cross validation error and the
training error visualised in figure 4, we see that median val-
ues are both around zero. As expected, interquartile ranges
are smaller with the training data than with cross validation
or early stopping data. However, the interquartile range of
the cross validation data was not dramatically larger. We
therefore assume, that overfitting was at least small.

5. Conclusion and Outlook

In this work, a simulation study was performed to sys-
tematically study the influence of changed ionic concen-
trations on the ECG. The results partly confirmed findings
in literature. We could show that artificial neural networks
are capable of reconstructing the ionic concentrations with
the extracted features from the simulated ECGs as inputs.

A few topics of this work need further research: Start-
ing from the selection of the cell model, others could be
evaluated. A model optimisation of the O’Hara Rudy
model could correct the undesired behaviour for low [K*],.
Himeno’s ventricular cell model [10] could be used as
electrophysical cell model, too. Furthermore, due to differ-
ent heart and torso geometries, a change of these could re-
sult in other feature value trends. Thus, an expansion using
more anatomical models is crucial for further evaluation of
the findings. In [3], a patient specific calibration is intro-
duced to improve results on patient data. This substantiates
a patient-dependency of at least their evaluated feature, but
could also mean that a calibration is needed in general. An-
other important point would be the extension of the study
featuring an atrial model. This could deliver more features
obtained from the P wave. These might improve the es-
timation of [K*],. The determination of the features was
done by looking at changes in the temporal ECG signals.
This could be extended to an evaluation of the frequency
domain or the principal components, for example. Further-
more, the application of the method to clinical data is still
missing. Many diseases can cause shifts in ECG paramet-
ers. Thus, a variety of patients showing abnormal [K*],
and [Ca®*], should be included during the data acquisi-
tion. This could deliver more information about the de-
pendency of ionic concentrations and ECG markers, that
are assumed to exist. However, this study was a first step
on the way to a reliably working method for the estimation
of ionic concentrations. By achieving small estimation er-

rors, we proofed that our features describe the changes in
ECG and that a simple neural network, which was espe-
cially designed to prevent overfitting, with one layer and
six neurons can reconstruct [K*], and [Ca?*],.
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