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Abstract

Propagation of electrical atrial activity (AA) during
atrial fibrillation (AF) is a process characterized by differ-
ent short- and long-term recurrence behaviours. Two anti-
thetical (not mutually exclusive) hypotheses were proposed
to noninvasively describe this nonstationary behaviour.
The first hypothesis (H1) assumes a process with station-
ary spatial properties of AA propagation, but time-varying
frequency properties, and vice versa for the second (H2).
Based on H1 and H2, two phenomenological models were
proposed, both able to replicate observations on AF pa-
tients, and a novel measure was introduced to assess the
spatial variability of AA propagation (SVAAP) over short
and long AA segments. Validity of the models was tested by
looking at the relation between SVAAP-short and SVAAP-
long on real observations from AF patients (high-density
body surface potential maps recorded in 75 patients af-
fected by persistent AF). H1 is confirmed if SVAAP-short
is approximately equal to SVAAP-long. H2 if SVAAP-short
is less than SVAAP-long. Results confirmed H2, showing
that AA propagation during AF has strong nonstationary
spatial properties. This could suggest new parameters to
characterise AF substrate and predict therapy outcome.

1. Introduction
Propagation of electrical atrial activity (AA) during

atrial fibrillation (AF) is a process characterised by dif-
ferent short- and long-term recurrence behaviours [1]. A
detailed description of those differences may help to bet-
ter characterise the AF substrate heterogeneity and com-
plexity and suggest novel parameters to improve diagnosis
and prediction of treatment outcome. This requires under-
standing the origin of these nonstationary behaviours. Al-
though it is well known that AF is characterised by time-

varying frequency properties [2, 3], it is unclear whether
this is the main contribution to the nonstationarity be-
haviour in the propagation of the AF wavefronts.

In this study, two antithetical (not mutually exclusive)
hypotheses are suggested to noninvasively characterise the
nonstationary behaviour of AA propagation during AF.
The first hypothesis (H1) assumes a process with station-
ary spatial properties of AA propagation, but time-varying
frequency properties. The second (H2) assumes a pro-
cess with time-varying spatial properties and stationary
frequency properties. Two models are implemented to re-
produce each hypothesis, and a novel measure is suggested
to quantify the amount of spatial variability in AA propa-
gation. This measure is computed both on the output of the
two models and on real observations from patients affected
by persistent AF, to test each hypothesis and select the one
most in agreement with real data.

2. Methods
2.1. BSPM data and pre-processing

Body surface potential maps (BSPMs) were recorded in
75 patients in persistent AF, with 120 anterior and 64 pos-
terior leads (ActiveTwo BSM Panels Carbon Electrodes,
Biosemi B.V., The Netherlands; Fig. 1). ECGs were
sampled at 2048Hz, and downsampled at 256Hz. A one-
minute segment was selected for each subject, low-quality
leads were excluded (low signal-to-noise ratio, poor elec-
trode contact, motion artefacts), and Wilson’s Central Ter-
minal was subtracted in line with conventional ECG anal-
ysis. After band-pass filtering the signals between 1 and
100Hz (3rd order Chebyshev), QRST cancellation was
performed using an adaptive singular value decomposi-
tion method, inspired by the approach in [4], with multiple
QRST window templates defined using hierarchical clus-
tering. The extracted AA signals were post-filtered with
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Figure 1. BSPM electrode configuration, comprising 120
anterior leads and 64 posterior leads. Thick circles: default
positions of the precordial leads V1, . . . , V6.

a zerophase notch filter at 50Hz to suppress power line
noise, and with a 3Hz zero-phase highpass filter (3rd order
Chebyshev) to remove low-frequency residuals not related
to (persistent) AF.

2.2. Multi-Variable AA Recurrence Signals
Recently, we introduced a novel approach to describe

the oscillatory patterns of AA signals during AF and well
represent their recurrent behaviour over time, at the same
time accounting for different short- and long-term recur-
rence behaviours [1]. The approach consists of generating
an autocorrelation-like signal as follows: given the matrix
X of size ` × N collecting all extracted AA signals from
a patient (` = 184 leads, and N = 60s · 256Hz = 15360
samples), each column ofX is assumed to provide an `×1
vector x(n), n = 1, . . . , N , which represents the overall
spatial AA from all electrodes (hence multi-variable) at a
given time instant. Then, a square matrixR of sizeM×M
is generated by computing:

Ri,j =
x(i)Tx(k)

||x(i)||2||x(k)||2
,

with i = 1, . . . ,M ,
withj = 1, . . . ,M ,
and k = i+ j − 1.

(1)
Each entry of R is therefore a measure of the cosine of
the angle between two vectors, and provides a sort of nor-
malized sample correlation. Moreover, column j includes
correlation values at lag j − 1. The average over each col-
umn (per lag) is then computed, thus providing a multi-
variable autocorrelation function of the spatial AA oscil-
latory patterns, for lags p = 0, . . . ,M − 1. This function
allows capture the recurrent behaviour of global AF spa-
tial patterns over the body surface covered by the BSPM
electrodes. In particular, assuming the AF cardiac dipole
changes over time, this should affect the distance defined
in (1). For instance, under the hypothesis that the AF
dipole passes through the same points after a period T ,
the cosine of the angle between any two vectors which
are T seconds apart is expected to equal 1. This proce-
dure is repeated over nonoverlapping subsets of columns
of X , called blocks, each block m including 2M columns.

A matrix R(m) and the corresponding autocorrelation sig-
nal can then be computed for each block m, to account for
nonstationary behaviours in AF propagation. Those are de-
fined as the multi-variable AA recurrence signals r(p)(m)

(p = 0, . . . ,M − 1; m = 1, . . . ,

⌊
N

2M

⌋
) for a patient. A

value of M = 500 was used in this study. This guaranteed
to span approximately 4 s in each block, thus capturing
several periods of AF. An example of multi-variable AA
recurrence signals r(p)(m), computed over three consec-
utive blocks, is given in Fig. 2. Notice the variability in
the shape of r(p)(m) from block to block, underlying the
nonstationary behaviour of AF propagation patterns.

2.3. Phenomenological models of AA prop-
agation during AF

Based on H1 and H2, two phenomenological models
were generated, both able to generate pseudo-AA signals
that can replicate the r(p)(m) signals computed on pa-
tients’ data. The first model (M1) assumes a process with
stationary spatial properties of AA propagation, but time-
varying frequency properties, and vice versa for the second
model (M2). The two models were generated from Eq. (2):

Mk(n) = cos(2π
f(n)

Fs
n+ a · sk(n, d, v) + k/2),

with f(n) = fAF + b · s(n, d, v),

and s(n, d, v) being a random walk process.

(2)

fAF is the AF dominant frequency, and k = 1, 2, 3 al-
lows to generate 3-D loops which simulate the AA car-
diac dipole during AF (also in case no randomness is intro-
duced). M1 is obtained by setting a = 0 and b = 1, while
M2 is obtained by setting a = 1 and b = 0. s(n, d, v) is a
random walk process where each point is randomly drawn
from the standard normal distribution, such that:

s(n) = s(n− 1) + ∆,

with ∆ = v · x, x ∼ N(0, 1), s.t. |s(n)| ≤ d.
(3)

Hence, d controls the range of s(n) (the larger d the larger
the range), while v controls the rate of variation of the in-
crement (the larger v the larger the rate of variation). The
use of a random walk approach is suggested by what can
be observed on real AA signals during AF. Indeed, for the
same set of parameters (d, v) (same AF substrate), it gives
different dynamics w.r.t. where or when it is observed (as
for the different dynamics of AF propagation captured by
r(p)(m) over consecutive blocks). Dower’s transform was
finally used to map the three Mk(n) signals in (2) into a
12-D space to simulate 12-lead ECGs [5]. Fig. 3 shows
examples of outputs of models M1 and M2.
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Figure 2. r(p)(m) curves from three consecutive blocks in a patient (m = 1, 2, 3 and p = 0, . . . , 499); n.u. is normalized
units. In (a), the segment shows the constant portion of r(p)(m) whose mean absolute value is used as a measure of long-
term recurrence behaviour of AA propagation (Section 2.5.3). The first negative peak P1 in the r(p)(m) curve is also shown,
which is used as a measure of short-term recurrence behaviour of AA propagation (Section 2.5.4).
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Figure 3. Examples of simulated 3-D cardiac dipoles ((a) and (d)), and corresponding pseudo-AA signals ((b) and (e))
and r(p)(m) curves ((c) and (f)), for model M1 (left column) and M2 (right column). Continuous lines corresponds to
s(n, 0.2, 0.1), while dot-dashed lines to s(n, 2, 0.2). a.u. stands for arbitrary units. Only the first 200 samples are displayed
in (a), (b), (d), and (e).
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Figure 4. Example of calculation of SVAAP from the
spectrum of a matrix. Indicated in dashed line is the point
that minimises the distance with the origin.

2.4. AA subspace dimension
Spatial variability of AA propagation (SVAAP) was

used as a measure to assess validity of both models in rep-
resenting AF propagation dynamics in patients. SVAAP

was assessed by computing AA subspace dimension. This
was defined as the point in the spectrum of a matrix X̃ that
minimises the distance between the plot of the spectrum
and the origin (where X̃ can stand for either matrix X or
a part of X of size ` × 40; see Fig. 4). The spectrum
of X̃ was generated by applying Singular Value Decom-
position to X̃ , and then by scaling all singular values by
`
σ1

(where σ1 is the first singular value). Scaling insures
to have same units on both axis of the spectrum, and ac-
curately estimate SVAAP. SVAAP was assessed over short
and long AA segments. The whole signals were used to
compute SVAAP-long, while SVAAP-short was computed
over nonoverlapping segments of 40 samples (correspond-
ing to one period of an AF waveform of frequency equal
to 6.4 Hz; average AF dominant frequency for all patients:
6.6± 0.7 Hz), and then averaged over all segments.
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2.5. Analyses and Results
1. Assessment of spatial variability of AA propagation

on M1 and M2. SVAAP-short and SVAAP-long were first
assessed on pseudo-AA signals from both M1 and M2,
generated by means of Eq. (2). Several pseudo-AA sig-
nals were generated for each model, by randomly select-
ing parameters d and v from the empirical range [0.1, 5].
As expected, M1 gave SVAAP-short approximately equal
to SVAAP-long (stationary spatial properties and time-
varying frequency properties, which do not affect AA sub-
space dimension), while M2 gave SVAAP-short less than
SVAAP-long (time-varying spatial properties and station-
ary frequency properties). This confirms that M1 mainly
represents H1, while M2 represents H2.
2. Assessment of spatial variability of AA propagation on

patients’ data. SVAAP-short and SVAAP-long were then
assessed on the patients’ data, to confirm either H1 or H2.
H1 is confirmed if SVAAP-short is approximately equal to
SVAAP-long (as for M1). H2 if SVAAP-short is less than
SVAAP-long (as for M2). Results showed that SVAAP-
short was significantly less than SVAAP-long (p< 10−4,
Wilcoxon signed-rank test). This confirms H2, showing
that AA propagation during AF is mainly a spatial nonsta-
tionary process.
3. Correlation between long-term spatial variability and

long-term recurrence of AA propagation. A visual inspec-
tion of r(p)(m) curves in Fig. 2 shows that they are char-
acterized in general by two distinct behaviours: an early
phase with a decreasing autocorrelation value, and a later
phase with an approximately constant behaviour, and very
low autocorrelation values [1]. The mean absolute value
of the constant portion of each r(p)(m) signal was com-
puted (150 ≤ p ≤ 450; Fig. 2(a)), and the average over
all blocks was taken as a measure of long-term recurrence
behaviour of AA propagation in a patient. Correlation be-
tween long-term spatial variability and long-term recur-
rence of AA propagation was then computed. SVAAP-
long was negatively correlated with long-term recurrence
of AA propagation (R= −0.50, p < 10−4).
4. Correlation between short-term spatial variability and

short-term recurrence of AA propagation. The absolute
value of the first negative peak in an r(p)(m) curve (P1 in
Fig. 2(a)) can be interpreted as a measure of short-term
recurrence behaviour of AA propagation in a patient. This
peak occurs at approximately half a period of the AA prop-
agation waveform (and thus also relates to the AF dom-
inant frequency). Correlation between short-term spatial
variability and short-term recurrence of AA propagation
was computed. SVAAP-short was negatively correlated
with |P1| (R= −0.82, p < 10−4).

3. Conclusions
This study proposed two antithetical phenomenological

models for noninvasively characterising short- and long-

term dynamics of AA propagation during AF. One model
assumes a process with stationary spatial properties of AA
propagation, but time-varying frequency properties, and
vice versa for the second. Both models were able to repli-
cate AA recurrence signals as observed on patients suffer-
ing from persistent AF. However, only the second model
showed spatial variability properties similar to those ob-
served on real data. This suggests that AA propagation
during AF is not only characterised by time-varying fre-
quency properties, but also and mainly by time-varying
spatial properties. Moreover, the negative correlation be-
tween SVAAP-long and long-term recurrence of AA prop-
agation suggests that the more organised AA is (and the
less complex the AF substrate) the more stable in time
and space its propagation is (fewer propagation paths), and
vice versa. Additionally, the negative correlation between
SVAAP-short and short-term recurrence of AA propaga-
tion suggests more stable loops (reentries) over short time
windows. These results are in agreement with the fact that
a more progressed AF (and a more complex AF substrate)
manifests in more disorganised and nonstationary AA sig-
nals [6]. At the same time, this novel approach may be able
to capture more details about AF propagation dynamics
and be able to discriminate among patients characterised
by very similar AF substrate complexity. This could sug-
gest new parameters to predict therapy outcome.
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