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Abstract

In spite of the progress in management of Atrial Fibril-
lation (AF), this arrhythmia is one of the major causes of
stroke and heart failure. The progression of this pathology
from a silent paroxysmal form (PAF) into a sustained AF
can be prevented by predicting the onset of PAF episodes.
Moreover, since AF is caused by heterogeneous mecha-
nisms in different patients, as we demonstrate in this pa-
per, a patient-specific approach offers a promising solu-
tion. In this work, we consider two ECG recordings, one
close to PAF onset and one far away from any PAF episode.
For each patient, we extract two 5-minute ECG segments
approximately 20 minutes apart. Next, we train a linear
Support Vector Machine (SVM) classifier using patient-
specific sets of time- and amplitude-domain features. In
particular, we consider the P-waves and the QRS com-
plexes in short windows of 5 consecutive heart beats. Fi-
nally, we validate the method on the PAF Prediction Chal-
lenge (2001) PhysioNet database predicting the onset with
an F1 score of 97.1%, sensitivity of 96.2% and specificity
of 98.1%.

1. Introduction and State-of-the-Art

Atrial Fibrillation (AF), defined as a quivering or irregu-
lar heartbeat, is one of the major causes of stroke and heart
failure [1]. The majority of patients suffer from an initial
paroxysmal form (PAF), which progresses into a persistent
or permanent arrhythmia. Moreover, a significant propor-
tion of patients affected by PAF are initially asymptomatic,
even though risk of complications for these patients is sim-
ilar to the symptomatic condition [1].

According to the European Society of Cardiology (ESC)
2016 guidelines [1] for the management of AF, the aim
is to reduce the frequency of episodes, prevent complica-
tions and alleviate symptoms, in the case of PAF. Further-
more, PAF patients may be suitable for domiciliary self-
treatment, using the so-called “pill in the pocket” approach
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[1], that is, a single oral dose pharmacological cardiover-
sion. Therefore, predicting a recent-onset episode of PAF
may shorten the initiation of the treatment, as well as the
time to resolution of symptoms. Additionally, this pre-
diction is particularly relevant for treating asymptomatic
episodes, which remain unseen otherwise.

Different studies describe the prediction of PAF on-
set, by analysing changes in the surface electrocardio-
gram (ECG). The classical approach is to consider prema-
ture atrial complexes (PACs) and P-wave variability [2, 3].
PACs are premature beats originating in the atria from ec-
topic pacemaking tissue active before the sinoatrial node.
Zong et al. [2] detect the PACs and predict the PAF onset
based on a measurement of PAC rate weighted for different
windows in the signal, favouring the closest to the onset.
Schreier et al. [3] analyse the P-wave morphology of both
regular and premature beats. Then, they extract the prob-
ability that a specific degree of P-wave variability is asso-
ciated with a PAF episode. Other approaches consider the
P-wave non-linear dynamics to achieve higher accuracy in
the prediction [4]. However, AF is caused by heteroge-
neous mechanisms in different patients and the therapeu-
tic strategies should derive from the individual conditions.
Different works report patient-specific modelling, in par-
ticular for ECG signal analysis. Indeed, two works report
automatic patient-specific classification of normal or pre-
mature beats considering swarm optimization feature se-
lection [5, 6].

This paper aims to predict PAF onset while removing
inter-patient variability to achieve higher accuracy and po-
tentially optimize individual patient therapy. Section 2 de-
scribes in detail the methodology used to tackle this prob-
lem. Section 3 presents the results of the methodology ap-
plied. Finally, in Section 4 we conclude that it is possible
to accurately predict the PAF episodes using our patient-
specific methodology.
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Figure 1. Block diagram of the proposed method

2. Patient-Specific PAF Prediction

Figure 1 shows the block diagram describing the steps
of our methodology. First, the ECG signal is filtered
and the fiducial points are extracted. Secondly, time- and
amplitude-domain features related to the P-wave and QRS
complex are extracted. Finally, the classification method
predicts whether the considered signal is close or far from
the PAF onset on each patient.

2.1. ECG Pre-Processing and Delineation

The pre-processing of the ECG signal consists in apply-
ing a morphological filtering [7], which removes the base-
line wandering. Then, we extract the fiducial points using
Pan-Tompkins QRS complex detection [8]. Next, we de-
tect the peak of the P-wave using the average durations of
the QRS complexes, P-waves and T-waves. The onset and
offset of the P-wave are defined as the initial increase from
the isoelectric line and the return to it. First, we consider
the Euclidean distance between the P-wave and triangle
waves constructed with the P-wave peak and consecutive
points on the isoelectric line. Then, we choose the on-
set (or offset) as the point approximately on the isoelectric
line where the Euclidean distance is minimum. Figure 2
shows the triangle wave that gives the minimum distance
from the P-wave, and the onset and offset detected.

2.2. Feature Extraction

The fiducial points used for feature extraction are the
onset, peak and offset of the P-wave, R-wave, and S-wave.
We choose time- and amplitude domain features in short
windows of 5 consecutive beats. The time-domain features
correspond to time intervals from each fiducial point to the
R peak in the same beat, within the short window. More-
over, we consider the RR interval between two beats. The
amplitude-domain features correspond to the voltage value
for each fiducial point relative to the isoelectric line.

2.3. Patient-Specific Classification

The patient-specific learning approach consists in train-
ing a classifier on two ECG signals close and far from PAF
onset for each patient and testing on new examples from
the same patient. Assuming that the conditions in a signal
close to (or far from) the onset are the same, we extract the
training and test set. We choose two segments at least 20
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Figure 2. Detection of the onset (offset) of the P-wave
based on the minimum euclidean distance between the P-
wave and a triangle wave with a slope depending on the
peak and the onset (offset).

minutes apart, considering the last 350 R peaks (around 5
minutes) as the training set and the first 350 R peaks (dis-
carding the beginning of the signal, in case of initial noise)
as the test set. The window length is chosen based on a
trade-off between number of samples to avoid overfitting
and classification accuracy.

Algorithm 1 Training model per patient (offline phase)

1: function TRAINING(fp, segment, consBeats,y)
2 __ segment

m " consBeats’
3 for i = 1tomdo
4 x; = featureExtraction(fp);
5 Z; = xlo_-;u'x;
6 end for

: 1o, T s

7 min  sw'w+C Y &

W,b,g i=1
8: S.t.
9: yilwlzg+b)+&>1, i=1.m
10: & >0, i=1..m

11: end function

As shown in Algorithm 1, the training part takes as in-
put (Line 1) the fiducial points fp extracted with the de-
lineation, the segment (in this case 350 beats) extracted
at the end of the two ECG signals close and far from PAF,
the short window of consecutive beats (consBeats, in this
case 5), and the labels y. Then, Line 2 computes the num-
ber of samples in the training set, m. Next, in Lines 3-6
the algorithm extracts the features reported in Section 2.2
within the segment and normalizes them. Next, Lines 7-10
compute the training model considering an SVM classifier
with a linear kernel. The SVM linear model is the sepa-
rating hyperplane between the two classes and is described
as a linear combination of the normalized features vector
z and the normal vector to the hyperplane w. Since the
classes are not linearly separable, a soft-margin technique
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is applied considering correction parameters (C' and &) to
compensate for the examples on the wrong side of the mar-
gin.

Algorithm 2 Classification of a new example (online
phase)

1: function TEST(fp, segment, consBeats)
2 m = segment
consBeats’
3 for i =1tomdo
4 x; = featureExtraction(fp);
S: Zi = %;
6 if w'z 4 b > o then
7 Y, = 1; > Close to PAF
8 numClose + +;
9: else
10: v =—1; > Far from PAF
11: end if
12: end for
13 if zumllose 5 (.5 then
14: label = “Close to PAF”;
15: else
16: label = “Far from PAF”;
17: end if

18: end function

Algorithm 2 considers a new segment of 350 beats and
applies the same features extraction and normalization as
the training (Lines 1-5). Then, given the training model,
the algorithm classifies a short window as 1 or -1 (Lines
6-11). Meanwhile, it counts the number of windows clas-
sified as 1. As shown in Lines 13-17, if the number of win-
dows represents more than 50% the total amount of sam-
ples, the whole 5-minute window is classified as “Close to
PAF”, otherwise “Far from PAF”.

3. Experimental Setup and Results

We validate our approach on the PAF Prediction Chal-
lenge (2001) PhysioNet database [9, 10]. The dataset in-
cludes 53 patients affected by PAF. For each patient two
30-minute ECG signals were recorded at a sampling fre-
quency of 128 Hz: one right before a PAF onset and one at
least 45 minutes far from any PAF episodes. For reasons
related to the morphological filtering and delineation, we
resample the signals at 250 Hz and we choose automati-
cally one of the two channels available in the dataset (re-
lated to lead II). The data for each patient are divided con-
sidering the method described in Section 2. The training
data includes 350 beats extracted from the end of each sig-
nal. We test the approach on segments of 350 beats at the
beginning of the signals, 20 minutes apart from the train-
ing data. This setup allows to predict 25 minutes before
the PAF.
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Figure 3. Results of leave-one-out cross-validation for
three different classifiers applied to four sets of features for
the patient-specific classification. F1 score is computed as
a measure of overall accuracy.

First, we perform a leave-one-out Cross-Validation
(CV) on the training set for each patient to evaluate the
generalization performance of different classifiers and se-
lect the combination of features that best predicts the out-
put. Then, we test the approach considering the results
obtained using CV. We examine different combinations of
QRS complex and P-wave features, as described in Section
2.2. Moreover, we analyse k-nearest neighbours (k-NN)
and support vector machine (SVM) classifiers, the last one
with different kernels (first and second order polynomial).
Finally, we evaluate the diagnostic ability of the classifiers
on the test set with the F1 score, which focuses on the pos-
itive rate, sensitivity and specificity.

3.1. Leave-One-Out Cross-Validation

As reported in Figure 3, we apply first the leave-one-
out CV on different classifiers and compute the F1 score
for all patients. The CV results show that the classifiers
have similar values for the same set of features, while the
results improve considering different sets of features for
each patient.

3.2. Patient-Specific Classifier Stability

In order to analyse the robustness of our results, we per-
form a 5-fold CV and compare it to the leave-one-out. This
comparison allows to analyse the classifier stability based
on the variation of number of samples. k-NN is sensitive to
the local shape of the data and to the training set size and
shows a variation of F1 score of 3%. Alternatively, SVM is
more robust against local minima with a variation of only
0.15% and 0.48%, respectively for linear and quadratic.
However, our patient-specific method shows higher accu-
racy even considering different classifiers and, in particu-
lar, the low complex linear SVM classifier.
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Figure 4. Results of prediction on new examples shown in
a ROC curve using the model derived from a linear SVM
classifier and the patient-specific feature set selection.

3.3. Patient-Specific Feature Set Selection

Our proposed patient-specific approach refers to select-
ing combinations of features for each patient. These com-
binations include different fiducial points (cf. Section 2.2).
Based on the leave-one-out CV, we choose for each patient
the feature set that results in the maximum F1 score. As
an example, for one patient, choosing the feature set in-
cluding the peak of P-wave and R leads to an F1 score of
61.1%, whereas adding also the onset, offset and S leads to
an F1 score of 95.0%. For another patient, the results for
choosing the same feature set report an F1 score of 82.3%,
but adding onset and offset reaches an F1 score of 88.9%.

3.4. Evaluation on Test Set

Considering the linear SVM classifier and by select-
ing the feature set for each patient, we test our approach
on new examples included in the test set. We evaluate
the classification considering the F1 score, sensitivity and
specificity. Figure 4 shows the ROC curve of the linear
SVM for the patient-specific selection of the best feature
set. Finally, considering all the patients in the dataset,
our method is able to predict PAF onset with an F1 score
of 97.1%, sensitivity of 96.2%, and specificity of 98.1%,
which is higher than other approaches that only consider
inter-patient variability (79% [2] and 93% [4]).

4. Conclusion

Patients affected by PAF are at risk of the arrhythmia
progression into a sustained AF. Therefore, predicting the
onset of PAF episodes is required for progression preven-
tion. Moreover, PAF prediction can lower stroke risk. In

this paper, we demonstrate that considering the specific
profile of each patient, highly improves PAF onset pre-
diction. By training a linear SVM classifier and consid-
ering features related to the P-wave and the QRS com-
plex, our patient-specific method predicts PAF onset with
an F1 score of 97.1%, sensitivity of 96.2% and specificity
of 98.1%.
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