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Abstract 

The objective of biometrics is to identify subjects based 
on physiological or behavioral characteristics. This 
paper considers the spatial P-QRS-T loops of the vector-
cardiogram (VCG), aiming to identify the most reliable 
VCG-based features for human verification. We analyze 
clinical standard 12-lead resting electrocardiograms 
(ECGs) from 460 non-cardiac patients with 2 recordings 
(>1 year apart). We build human verification models for 
nine ECG to VCG transformations. This study gives clear 
justification that VCG is applicable for human biometrics 
with true verification rate TVR=83.5-91.4%. The ‘Uijen’ 
transformation has the best TVR for all VCG features 
(91.4%) and individual features for P-loop (70.9%), T-
loop (77.1%), QRS-loop (89.6%), Frontal plane (84.5%), 
Sagittal plane (84.1%), 3D (91.1%), while ‘Dower’ and 
‘Kors’ are the best for the Horizontal plane (84.5%).  

 
 

1. Introduction 

The objective of biometrics is to identify subjects 
based on physiological or behavioural characteristics, 
such as fingerprint, iris, face, voice, which however could 
easily be mimicked via fake finger, iris, face photos, 
playback, do not provide liveness detection [1] and are a 
topic for discussion on privacy protection [2]. The 
electrocardiogram (ECG) has been investigated as an 
advanced signal for human biometrics, presenting vital 
signs. The human verification or identification solutions 
employ a single ECG lead [3, 4], limb leads [5] or 
standard 12-lead ECG [6, 7], based on temporal and 
amplitude ECG features [6], cross-correlation analysis [5, 
7], PQRST pattern matching [3, 4].  

The spatial features of the cardiac vector represented 
by the vectorcardiogram (VCG) are expected to be useful 
for biometric applications, considering the inter-subject 
differences of the VCG loop orientation and shape, and 
its independence from the heart rate [8]. However, we 
could find a few studies based on VCG biometrics, all of 
them solving the human identification task, using: 

- Support vector machine classifier, applied over QRS- 
and T-loop features derived via inverse Dower 
transform [9] or pseudo-inverse transform, including 
only the limb leads [10];  

- Neural networks classifier, applied over equal distance 
descriptor coefficients or Fourier descriptor 
coefficients of the QRS-loop constructed by plotting 
the QRS in lead I (x-axis) against lead aVF (y-axis), 
i.e. the QRS-loop projection in the vertical plane [8].  
This paper considers the spatial P-QRS-T loops of the 

VCG, aiming to identify the most reliable VCG-based 
features for human verification. Presuming that different 
techniques for transformation of 12-lead ECG to VCG 
[11-13] and P-QRS-T loops projections in the Frontal, 
Horizontal and Sagittal planes [14] have specific 
diagnostic significance, we aim to compare their effect on 
human verification. 

 
2. ECG database 

The study is using a proprietary clinical ECG database 
(Schiller AG, Switzerland), which contains two 10s-
sessions of standard 12-lead resting ECGs from 460 non-
cardiac patients (235/225 male/female, 18-106 years old), 
admitted in the emergency department of the University 
Hospital Basel during the period (2004-2009). The ECGs 
are recorded via the commercial ECG device SCHILLER  
(500Hz, 2.5µV/LSB, bandwidth 0.05-150Hz) at distant 
time sessions S1 and S2>S1+1year. The person 
verification scheme for comparison of subjects between 
S1 and S2 gives N=460 pairs with equal identity (ID) and 
N*(N-1)=211140 pairs with different ID. Our approach to 
handle the imbalance ratio (459:1) of different-to-equal 
ID pairs considers two independent datasets: 
- Training dataset: 230/230 ECG pairs of equal/ 

different IDs, presuming that the verification classifier 
should be trained on the first half of subjects using 
balanced data, not over fitted to any of the classes. 

- Test dataset: 230/210910 ECG pairs of equal/ different 
IDs, ensuring that unbiased classifier performance is 
further reported on a big dataset, including all available 
cases fully independent from the training. 
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3. Method 

3.1. VCG transformations 

VCG is derived from the standard 12-lead ECG via 
inverse transform matrix Do, so that each of the 
orthogonal VCG leads (X, Y, Z) is a linear combination 
of the eight independent leads (I, II, V1-V6): 
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In Table 1, the Do coefficients of nine established 
transformations are reproduced. Figure 1 compares all 
transformations, showing their Do coefficients in the 
orthogonal X,Y,Z space after normalization to the 
maximal Do value in each transformation. 

 
3.2.  VCG features 

A commercial ECG measurement and interpretation 
module (ETM, Schiller AG) is used for beat averaging 
and delineation of ECG waves (Figure 2). These 
measurements are then used for the calculation of 71 
spatial features of the beat-averaged VCG-loop: 
- 3D features: 3 loops (P, QRS, T) x 8 features 

(circumference, width, area (value, azimuth, 
elevation), maximal vector (amplitude, azimuth, 
elevation)), spatial QRS-T angle, proportion of QRS 
area after the maximal vector.  

- 2D features: 3 planes (Frontal (F), Horizontal (H), 
Sagittal (S)) x 3 loops (P, QRS, T) x 5 features 
(circumference, width, area, maximal vector 
(amplitude, azimuth)). 
 

3.3.  Human verification models 

The human verification answers the question: “Is the 
subject who he/she claims to be?”. The verification model 
takes the binary decision ‘verified’ or ‘rejected’ subject 
ID, by comparing a pair of ECG recordings {S1,S2} with 
a linear discriminant analysis (LDA). The verification 
performance is estimated by the proportions of correctly 
verified equal IDS1=IDS2 (true acceptance rate, TAR), 
correctly rejected different IDS1IDS2 (true rejection rate, 
TRR), and the common mean of TAR and TVR (true 
verification rate, TVR):  

- (%),100.
)ID(ID sComparison Nb

onsVerificatiCorrect Number 

S2S1 
TAR    

- (%),100.
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S2S1 
TRR  
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2
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 .  

 

Table 1. Inverse transform matrices (3x12) of standard 
12-lead ECG to 3-lead VCG for nine published 
transformations. The largest coefficients in a row, 
corresponding to the significant ECG leads in the 
transformation are printed in bold. 
 

 VCG I II V1 V2 V3 V4 V5 V6 
X 0.156 -0.01 -0.172 -0.074 0.122 0.231 0.239 0.194
Y -0.227 0.887 0.057 -0.019 -0.106 -0.022 0.041 0.048

Dower 
[11] 

Z 0.022 0.102 -0.229 -0.31 -0.246 0.063 0.055 0.108
X 0.38 -0.07 -0.13 0.05 -0.01 0.14 0.06 0.54 
Y -0.07 0.93 0.06 -0.02 -0.05 0.06 -0.17 0.13 

Kors 
[11] 

Z 0.11 -0.23 -0.43 -0.06 -0.14 -0.2 -0.11 0.31 
X 1.08 -0.15 -0.01 0.04 0.04 0.05 0.07 0.37 
Y -0.325 1.31 0.03 -0.02 -0.02 0.03 -0.07 -0.08

Uijen 
[11] 

Z -0.225 -0.21 -0.26 -0.28 -0.14 0.04 -0.15 0.34 
X 0.82 -0.24 -1.27 -0.55 0.72 1.86 1.92 1.53 
Y -3.04 5.62 -0.71 -0.71 0.1 0.35 0.12 -0.15

Willems
[11] 

Z 1.62 -2.42 -1.71 -2.26 -2.02 -0.8 0.31 0.97 
X        1.06 
Y -0.625 1.25       

Bjerle 
[11] 

Z    -0.532    0.043
X        1.0625
Y -.5625 1.125       

Arved-
son 
[12] Z    -0.463    0.037

X 1        
Y -0.5 1       

Schreck
[11] 

Z    1     
X 0.357 -0.519 0.605 0.087 -0.002 0.167 0.306 0.192
Y 0.691 -0.462 0.008 0.059 -0.049 0.214 -0.017 0.88 

Hyttinen
(Frank) 

[11] Z 0.2 -0.946 0.043 -0.017 0.017 -0.032 0.237 -0.204
X 0.56 0.595 0.305 0.299 -0.052 -0.038 2.412 -4.275
Y 1.245 -0.563 -0.13 0.053 -0.001 -0.072 1.004 0.217

Hyttinen
(VCG) 

[11] Z 0.857 -1.295 0.41 -0.019 0.01 -0.086 0.238 -0.034
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Figure 1. Comparison of VCG Transformations: 3D 
projection of Do coefficients (normalized to unity). 
 

Non-redundant LDA models were trained by stepwise 
feature selection until TVR maximization, while keeping 
equal error rate (TAR=TRR) on the training dataset. 
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Figure 2. Example of VCG leads and 2D VCG loops obtained with Uijen inverse transformation of 12-lead ECG recordings 
from subject ID1 (S1 and S2 sessions) and subjects ID2, ID3 (S2 session). One column shows one session.  
 

4. Results and Discussion 

Figure 2 presents an example of the “who is who?” 
validation task, that should confirm if the 2nd, 3rd and 4th 
recordings are from the subject of the 1st recording. 
Although the 3 VCG leads (X, Y, Z) look quite similar 
and uncertain about the differences between all four 
recordings, the comparison of the VCG loops shows 
distinguishable differences for the 3rd and 4th recordings, 
e.g. QRS max vector azimuth is rotated (S, H-planes), 
QRS loop circumference, area and width are smaller (3rd 
recording, S, F, H-planes) or larger (4th recording, H-
plane), T-loop is larger (S, F, H-planes). 

Using an independent test dataset from a large 
population, we further report an unbiased assessment of 
different VCG-based human verification models. Figure 3 
shows that ‘Uijen’ transformation has the top-scored TVR 
for all VCG features calculated in the F-plane (84.5%), S-
plane (84.1%), 3D-space (91.1%), P-loop (70.9%), QRS-
loop (89.6%), T-loop (77.1%) and all features (91.4%), 
while both ‘Dower’ and ‘Kors’ transformations are top-
scored for H-plane (84.5%), better by 0.7% than ‘Uijen’. 
We distinguish the superiority of the ‘Uijen’ 
transformation with VCG synthesis predominantly from 
the limb leads (the largest Do coefficients).  
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Figure 3. Comparison of different VCG transformations. 
The highest TVR for each feature set is highlighted. 
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Figure 4. Validation of ‘Uijen’ transform on the test set. 
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Figure 5. TVR(%) of the top-scored single VCG features 
in loops and planes, using ‘Uijen’ transformation. Marks 
indicate the 1st (*) and the 2nd (#) best features among all.  

Taking the ‘Uijen’ transformation as a reference 
(Figure 4), the P-loop has the least biometric value with 
TVR about 7% lower than T-loop and 19% lower than 
QRS-loop. In fact, the QRS-loop carries the major 
biometric information (89.6%) since P, T-loops could 
additionally increment TVR by merely 2%. We find equal 
biometric significance of the three 2D planes (F, S, H 
about 84%). 3D features carry almost full biometric 
information (91.1%), only 0.3% lower than the model, 
including all features (91.4%).  

The VCG features with the most important individual 
impact for VCG-based biometrics are shown in Figure 5.  

Using a clinically relevant database across a large 
population, representative of physiologically related long-
term ECG changes and multi-session recording 
conditions, this study gives clear justification that VCG is 
applicable for human biometrics with TVR=83.5-91.4% 
after testing of 9 established VCG transformations. We do 
not find VCG superiority in comparison to ECG-based 
human verification studies, showing 85.6-90.9% for 
single leads [3,4], 87.2-94.6% for limb leads [5,7], 91.3% 
for chest leads [7], 86-96.3% for 12-lead ECG [6,7].  
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