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Abstract 

The activation of the myocardial muscle is triggered by 
Purkinje-myocardial junctions (PMJs), which are the 
terminal sites of the specialised cardiac conduction 
system (CCS). Obtaining the location of the PMJs and 
other sources of endocardial ectopic activity would be 
desirable for building computer models of cardiac 
electrophysiology and planning ablation interventions. 
We present a method to estimate the location and 
activation times of endocardial electrical sources in a 3D 
model of the ventricles. The algorithm requires a set of 
discrete electrical samples on the endocardium, which 
can include errors in location and activation time. The 
estimated sources are properly placed with a location 
and time error in the order of the measurement error. 
 

 
1. Introduction 

In the human ventricles the electrical activation starts 
in the sino-atrial node, and propagates down the His 
bundle, the bundle braches and finally the Purkinje 
network (PKN). The PKN is connected to the myocardial 
tissue at discrete locations known as Purkinje-myocardial 
junctions (PMJs) that trigger the tissue depolarization 
from a number of remote locations [1]. The network is 
extensive and the location of PMJs is distributed, forming 
clusters or hot-spots in specific areas such as the Papillary 
muscle insertions. Among the most common disorders 
related to the cardiac conduction system (CCS) there is 
the left/right bundle branch block, which results in a 
ventricular asynchrony. There have also been described 
several pathologies, such as macro-reentrant tachycardia 
that use the CCS to sustain the arrhythmia [2, 3, 4]. Those 
disorders can be treated with therapies such as cardiac 
resynchronization therapy or radiofrequency ablation, 
which are known to interact with the CCS [5].  

To improve those complex therapies that show low 
successful rates, there have been developed 3D multiscale 
computer models of the heart that aim at reproducing the 
patient disease and can be used to plan and optimize the 
therapy [6]. In that context, a computational model of the 
CCS is necessary if one wants to model its interaction 
with the activation sequence in health and disease. 
Clinical imaging techniques do not allow to recover the 

PKN structure, or its PMJs since they work at the 
milimeter scale, which makes it impossible to 
differentiate the “working” myocardium from the 
specialized PK cells. Microscopy techniques of exvivo 
histological samples have been used to analyse the CCS 
and to describe PMJs, however, only small sections of the 
CCS can be analysed [7]. Therefore, typically for heart 
modelling, non-specific 3D CCS models have been 
developed using fractals, or growing algorithms among 
others [8].  

Recently, some studies have shown techniques to 
inversely estimate or predict the location of PMJs from 
electro-anatomical maps [9, 10, 11]. The goal is to reduce 
the difference between simulated endocardial activation 
and a set of measurements obtained from the same 
patient’s endocardium. In [9] a set of PKN are 
synthetically generated, and following the PMJs are 
moved, added or deleted to reduce the differences 
between measurements and simulations. In [10] the 
backward Eikonal problem is solved in the EAM domain 
to find local minima in the activation maps, which are 
considered the electrical sources or PMJs. 

 
This study aims to estimate the location and activation 

time of all relevant endocardial sources of electrical 
activity from a sparse set of endocardial measurements, 
from now on sensor points, obtained by an electro-
anatomical mapping system (EAMs). Given the adequate 
proportion of EAM samples, the system will locate source 
points with a small error even in the presence of measure 
errors introduced by the acquisition system or the post-
processing of electrical signals.  

 
2. Material and Methods 

2.1 Estimation method 

We consider the ventricular-endocardium surface as a 
Riemannian manifold. The activation time at the sensor 
points pi (measured using a catheter on the endocardium) 
will be considered as a Gaussian random variable, 𝒯", 
with mean the actual activation time and a known 
standard deviation σ as shown in equation 1. 
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where sj is the source (PMJ) that activated pi, 𝜏(𝑠*+ is the 
actual activation time, d() is the geodesic distance 
between two points and υ the propagation velocity on the 
surface. Here we are assuming an isotropic propagation of 
the signal, so the geodesic distance can be calculated with 
a Fast Marching algorithm [11]. 

The sources (PMJs) are estimated in two different 
phases. First, given the local activation times (LAT) of all 
the sensor points and their geodesic distance to every 
point on the discretized manifold, we estimate the 
minimum activation time for each point in the mesh. This 
minimum activation time is in fact an approximation to 
the solution of the inverse Eikonal problem, considering 
the sensor points as boundary conditions. At every mesh 
point, if enough sensor points are compatible with this 
minimum activation time, the point is marked as a 
candidate source point (CSP). CSPs are given a score, 
based on the number of compatible sensor points and the 
evaluated errors. On a second phase, we eliminate CSPs 
whose associated sensor points are compatible with other 
CSPs with small errors. The sensor points are then 
associated to these other CSPs. That prevents the 
generation of PMJ clusters in the estimated set. This 
process of CSP elimination is done iteratively in the order 
induced by the scores, and after each iteration the scores 
are recalculated for all the involved CSPs. This second 
phase can be considered a special type of clustering of the 
CSPs obtained in the first phase and gives as result a 
minimum set of estimated PMJs that are able to explain 
the activation map with a small error. 

 
2.2 Simulation study 

To test the methodology, calibrate parameters and to 
compare our results with the previous works in the 
literature, we developed 2D scenarios based on synthetic 
Purkinje trees with different branch and PMJ densities. 
All the Purkinje trees lie on a 2D sheet of tissue of 6x9cm 
that represents the endocardium. To build the Purkinje 
tree structure we use an algorithm that begins with 1 
primary branch (B1) or 3 primary branches (B3) and it 
creates new branches recursively up to a user defined 
level depth. In this study we used two different levels of 
branch recursion, depth 2 (D2) and depth 4 (D4). The 
algorithm and scenarios are explained in detail in [12]. 

For more realistic tests, we have also used 3D surface 
models of left ventricles reconstructed from medical 
imaging of real patients combined with synthetic Purkinje 
trees obtained following the approach in [8].  

 
In all scenarios, the activation maps were sampled at 

random locations (sensor points) with increasing density 
to evaluate the quality of the solutions obtained with the 
proposed algorithm. The number of sensor points ranged 
from 100 to 1000 in steps of 100 points. The size of the 

set of sensor points is in the order of magnitude of a 
routinely EAM acquired in the clinic. In order to test the 
robustness of the algorithm, we introduced Gaussian error 
in the LAT of the sensor points with a standard deviation 
of 0.5, 1.5, 2.5 and 5.0. To evaluate the solution we have 
propagated a new signal using the new calculated source 
points and we use the mean of the absolute error of the 
LAT in all the points of the discretized manifold. Another 
way to measure the quality of the solutions is to calculate 
how far the estimated PMJs are from the real ones. This is 
calculated with a Fast Marching algorithm [11] centered 
in each real PMJ that stops when it reaches an estimated 
PMJ. 

 
3. Results 

The results of the simulation study for 2D scenarios 
are summarized in Figure 3 and Figure 4. Figure 3 shows 
the mean of the absolute error in two scenarios: B1D2 
with one primary branch and a level of recursion of 2, and 
B3D4 with three primary branches and a level of 
recursion of 4. The first plot is the simplest one, with only 
12 PMJs, and we can see that above 200 sensor points 
there is no improvement in the error. The second plot in 
Figure 3 is a more complex one with approximately 130 
PMJs and we can observe that it continuous improving 
with more sensor points. We can also see that the absolute 
error is proportional to the error in the sensor points and, 
in general, it is below its standard deviation. In the plot in 
Figure 4 we have represented the distance from the real 
focus (the PMJs) to the nearest estimated focus in order to 
measure how far the estimated focus are from the exact 
solution. The distance varies from 2mm for the smallest 
deviation to 5mm for a deviation of 5.0ms. It must be 
noted that this error in the estimation of the position is not 
only due to the error of the sensor or the algorithm, but 
also to the fact that some PMJs are not effective, i.e. they 
have no influence at all in the LAT of the domain, and so 
they are impossible to detect. 

In Figure 2 we can see a particular example of the 
B3D2 scenario in which we included a standard deviation 
error in the sensor of 1.5ms in the LAT. The mean of the 
absolute error in the LAT obtained for this scenario was 
0.98ms. In this scenario there are several PMJs which are 
not effective. 

In Figure 5 we have a 3D scenario with 1.000 sensor 
points with a standard deviation in the sensor error of 0.5 
ms. The mean of the absolute error in the whole mesh 
was 0.65 ms. 
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Figure 2: 2D scenario B3D2 with random set of sensor 
points (small dots), real sources (stars) and location of 
estimated source points (red spheres). Standard deviation 
in the sensor error of 1.5ms. Mean error obtained for the 
scenario: 0.98ms. 

 

Figure 3: Absolute error in scenarios B1D2 and B3D4 
with a standard deviation error in the sensor of 0.5, 1.5, 
2.5 and 5.0 milliseconds. 

 
Figure 4: Distance from a real focus (PMJ) to the nearest 
estimated focus in scenario B3D2 with a standard 
deviation error in the sensor of 0.5, 1.5, 2.5 and 5.0 
milliseconds. 

 

 
Figure 5: Detected PMJs (purple dots) for a 3D scenario 
with 1.000 sensor points with a standard deviation in the 
sensor error of 0.5 ms. The mean of the absolute error in 
the whole mesh was 0.65 ms. 

 
Discussion and conclusions 

We have presented an algorithm that can be used to 
obtain the location of sources of electrical activity in the 
ventricles even in the presence of error in the sensor 
points. Using the information from all the measurement 
points in a 3D domain, the algorithm converges to those 
endocardial areas where PMJs are found. This allows the 
use of the algorithm for obtaining a set of real activation 
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points for the ventricles and hence produce more realistic 
simulations of the heart. In cases in which a large number 
of PMJs is clustered in a region, it cannot differentiate 
each of them individually and as a results produces a few 
PMJs that summarize the whole group. PMJs within 
clusters have none or a very local impact in the overall 
activation map, since most of them are non-effective 
nodes.  The signal emitted by cluster inner PMJs is 
quickly masked by the PMJs at the border of the tree and 
they are mainly non-effective PMJs. Differently to other 
similar methods, the algorithm is designed to obtain the 
location of PMJs, and not only for reproducing the 
electrical activation sequence.  

One of the drawbacks of the method is that it requires 
a minimum number of sensor points, in the order of 1000, 
to obtain a sufficiently large number of PMJs which can 
be time consuming for an electrophysiologist. Although 
new systems can acquire larger number of measurements, 
they are not widely available yet. 
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