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Abstract

In various pathologies, such as hemorrhagic stroke or
traumatic brain injury, intracranial pressure (ICP) can
rise to the point of causing neurological damage and
should consequently be monitored. The invasiveness of
current ICP monitoring procedures, however, limits the pa-
tient pool. Having a non-invasive screening tool for detect-
ing intracranial hypertension would therefore be of high
value. In this work, we developed a binary classifier to
determine if ICP is above the clinical cutoff value of 20
mmHg. Arterial blood pressure (ABP) and cerebral blood
Sflow velocity (CBFV) recordings serve as the only inputs to
the classifier. We identified eighteen ABP and CBFYV fea-
tures reported to correlate with ICP. Given around 32 h of
ABP, CBFV and invasive ICP recordings from 36 traumatic
brain injury patients, we trained different binary classifiers
via leave-one-patient-out cross validation. The random
forest classifier resulted in the most stable and accurate
prediction, yielding a sensitivity of 69.1% and specificity of
78.3%. These encouraging results and the ease by which
features can be added to the framework, suggest possible
extensions to include, for example, features derived from
venous pressure or near-infrared spectroscopy recordings.

1. INTRODUCTION

Intracranial pressure (ICP) is an essential neurological
parameter that can be elevated in various pathological con-
ditions, such as hydrocephalus, subarachnoid hemorrhage
and traumatic brain injury [1]. An increased ICP can lead
to brain ischemia, neurological damage and ultimately to
brain herniation and death. The clinical gold standard of
ICP monitoring involves inserting a pressure probe into the
brain tissue or cerebrospinal fluid space. Due to the in-
vasiveness of the procedure, ICP monitoring is often lim-
ited to severely ill patients. Several attempts have been
made to estimate ICP from clinically available non- or
minimally-invasive measurements [2]. Most reviews con-
clude, however, that current methods to determine ICP
non-invasively, especially “ICP as a number” [3] are not
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sufficiently accurate for clinical practice [2]. Reasons for
the difficulty in estimating ICP non-invasively are among
others, the large patient variability, the heterogeneity of
cerebral blood flow due to autoregulation and the presence
of confounding factors such as (central) venous pressure
and the partial pressure of oxygen and carbon dioxide [4].

For triage and screening, the exact ICP value might not
be needed and knowing if a patient has intracranial hyper-
tension might be sufficient to direct care. Therefore, sim-
plifying the matter, our aim was to classify on a beat-by-
beat basis if ICP is above 20 mmHg, which is a common
clinical cutoff before (aggressive) treatment is initiated [5].
To achieve this, we use two commonly available physio-
logical signals, that influence and are influenced by ICP,
namely arterial blood pressure (ABP) and cerebral blood
flow velocity (CBFV). These physiological vital signs are
routinely monitored in most intensive care units. Basing a
classification algorithm on these two signals would there-
fore not alter clinical practice. ABP is commonly recorded
minimally-invasively via a radial artery catheter and CBFV
(in the middle cerebral artery) is measured non-invasively
using transcranial Doppler ultrasonography. Through a lit-
erature search we identified eighteen ABP and CBFV fea-
tures, that are thought to correlate with ICP. Using these
features we trained different supervised learning models: a
linear support vector machine (SVM), a Naive Bayes (NB)
and a random forest (RF) classifier for detecting an ICP
above 20 mmHg.

2. BINARY CLASSIFICATION OF ICP

To find features that are correlated with ICP, we per-
formed a literature search using PubMed and Google
Scholar akin to [3], using the keywords “non-invasive in-
tracranial pressure transcranial Doppler” and variations of
it. Thereby, we identified fourteen features for which
there is cumulative evidence of moderate to high corre-
lation with ICP [3, 4, 6]. We included four additional fea-
tures based on physiological considerations, yielding a to-
tal of eighteen features. These features are then com-
puted on a beat-by-beat basis, which requires only beat-by-
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beat aligned ABP and CBFV waveforms. The exact intra-
beat temporal relation between ABP and CBFV, which are
recorded at different sites (radial artery vs middle cerebral
artery) and with different devices, is therefore not required.
The computed features can be grouped as follows:

ABP features (diastolic, mean and systolic):

(ABPdiay ABPmeam ABPsys)- (1)

At highly elevated ICP, brain ischemia triggers the Cush-
ing reflex [7] in which the body attempts to restore ad-
equate cerebral blood flow (CBF) by increasing arterial
blood pressure. An increase in systemic blood pressure
has also been observed at moderately increased ICP, which
causes a change in sympathetic tone [6].

CBFYV features (diastolic, mean and systolic):

(CBFV.giy, CBFV pean, CBF V. ). )

In [8] it was observed that an increase in ICP resulted in a
drop in diastolic CBFV. Elevations in ICP lead to a reduc-
tion in cerebral perfusion pressure (CPP). When cerebral
autoregulatory capacity has been exhausted, such reduc-
tions in CPP will reduce cerebral blood flow (CBF). Due to
the fairly constant diameter of the middle cerebral artery, a
reduction in CBF, will in turn lead to a proportional re-
duction in CBFV. It is important to note that measured
CBFV depends on the angle of insonation of the transcra-
nial Doppler beam. This influence is usually small since
the ultrasound beam is practically collinear to the flow di-
rection, when the middle cerebral artery is insonated. To
be independent of the angle of insonation, we additionally
use ratio of CBFV features: Pulsatility index (PI), resistiv-
ity index (RI) and the Systolic-Diastolic Ratio (SDR):

Plcgrv = (CBFVgy — CBFV4i,) /CBFViean  (3)
RIcgry = (CBFVgy, — CBFVy;,) /CBFV gy “)
SDRcprv = CBFVy, /CBFV gjj. 5)

The Plcgpy has been reported in several works to be posi-
tively correlated with ICP (to varying degrees though [3]).
In complete analogy, we included the following ABP ra-
tios:

1:)IABP = (ABPsys - ABPdia)/ABPmean (6)
Rlpgp = (ABPSyS — ABPg,)/ ABPgy 7
SDagp = ABPsys/ABPdia. ®)

We introduced these features for two reasons: Firstly, due
to the reported widening of ABP pulse pressure during
the Cushing reflex and in ICP induced arterial hyperten-
sion [7]. Secondly, due to the influence of ABP pulsatility
(driver of blood flow) on CBFV pulsatility. ABP pulsatility
is thus a confounding factor when looking at Plcgpy only.

We introduced the following ratios of the aforementioned
features:

Plraio = Plcgrv /Plasp )
RlRatio = Rlcerv /RIagp. (10)

Additionally, we included:

Plcgrv.ir = [Plcrvitett — PLeBFvorignt (11)
RHOABP—CBFV = p(ABPpulse ’ CBFVpulse) ) ( 12)

where Plcgpy r measures the asymmetry in pulsatility of
CBFV between left and right cerebral artery pair. The
correlation coefficient RHOspp.cpry between the onset-
aligned ABP and CBFV waveform pulses assesses simi-
larity between the two and thus the degree of resistive be-
havior. Due to reported cardiac arrhythmia during intracra-
nial hypertension [9], the heart rate (interbeat interval) was
included in the feature vector. Finally, we also use the crit-
ical closing pressure [3] as a feature. The critical closing
pressure denotes the lower limit of arterial blood pressure
below which, due to active wall tension, arterioles collapse
and blood flow ceases.

2.1. Predicting Intracranial Hypertension

The algorithm can be subdivided into the following
parts: Beat detection, signal quality assessment, CBFV
channel selection, feature computation, and finally, binary
classification of intracranial hypertension.

Beat Detection: Given the ABP and CBFV signals (left
and right middle cerebral artery) we perform a beat onset
detection using the algorithm presented in [10]. Due to
the different ranges of CBFV signals compared to ABP,
we rescale the CBFV signals to the range of ABP to be
able to use the onset detection algorithm [10]. The ABP
and CBFV beat onsets are then matched to ensure that the
features extracted from ABP and CBFV pulses belong to
the same beat.

Signal Quality and Feature Computation: Following
this, we perform a beat-by-beat binary signal quality as-
sessment (SQA) to remove obvious artifacts. In our simple
rule-based SQA, the following physiological sanity checks
are performed for each beat: min(ABP) > 30 mmHg,
max(ABP) < 300 mmHg, max(ABP) — min(ABP) >
20mmHg, min(CBFV) > 5cm/s, max(CBFV) <
300 cm/s, and beat duration 7}, > 0.25s and T}, < 2.5s.
More elaborate template-based SQA algorithms such as
[11] can be used when the signal quality is lower. The
CBFV channel with the higher percentage of good beats
over the entire recording is then chosen for computing the
features, except for Plcgpy.ir, for which both CBFV chan-
nels are required. For each of the remaining (good) beats,
we then compute the aforementioned eighteen features.
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Binary data labels (ground truth) for training and testing
are generated by thresholding the beat-by-beat ICP mean
value using the common clinical cutoff of 20 mmHg. Fea-
tures and labels are averaged over 8 beats to increase ro-
bustness.

Training the Binary Classifiers: We trained and evalu-
ated linear SVM, NB and RF classifiers [12] using leave-
one-patient out cross-validation. Training and testing was
performed using the machine learning toolbox of MAT-
LAB 2017a (The Mathworks, Inc., USA). A RF classifier
is an ensemble method based on building multiple deci-
sion trees with a randomized learning procedure. Each de-
cision tree of the RF is built using a training set obtained
by sampling from the original training set (bagging). Dur-
ing learning, at each node of the decision tree on which
the next split is learned (see Fig. 1), a subset of the eigh-
teen features, in our case eight, is chosen at random. This
procedure performs an implicit feature selection and thus
reduces the chance of overfitting [12]. We used an ensem-
ble of 256 decision trees and limited their depth to 8 splits.
The standard random forest implementation grows uncon-
strained decision trees. In our implementation this would
lead to severe overfitting. This is due to the training sam-
ples not being independent, when belonging to the same
patient.

The NB and the SVM classifiers are more sensitive to
highly correlated (e.g., the pulsatility and resistivity in-
dices) or potentially irrelevant features. Therefore, we re-
sort to an explicit feature ranking and selection step for
these classifiers. Based on their correlation with ICP,
we used the following seven features: ABPpyean, ABPgys,
CBFVgia, Rlagp, Plcgrv, Plegrviir, RHOagp.cerv. For
both the NB and SVM we use the plain vanilla MATLAB
implementation, except for setting the class prior proba-
bilities for the NB classifier to uniform, to avoid learning
the class imbalance. When training the classifiers we gave
false negatives (missed intracranial hypertension) a four
times higher penalty than to false positives.

3. Dataset and Results

Dataset: To train and test our classification approach we
used the dataset in [13]. In total we had access to record-
ings from 36 patients who suffered from traumatic brain
injury and were therefore admitted to the neuro-ICU at Ad-
denbroke’s Hospital at University of Cambridge UK, in the
period 1992-1997. The usage of the anonymized data was
approved by the neurocritical care user’s committee of the
University of Cambridge for subsequent analysis and pub-
lications. The database contains 32.4h of simultaneous
recordings of radial ABP, CBFV measured from the left
and right middle cerebral artery and invasive ICP sampled
at a rate between 20 Hz and 70 Hz. All signals were up-
sampled to the common rate of 125 Hz. The SQA step

ABPy, > 167

Plcgpy > 1.5 CBFVgi, < 30

CBFVean > 26

no, (S no €s

‘ False ‘ ‘ True ‘ ‘ False ‘
Figure 1. Instance of a decision tree trained by with-

holding one subject. Class label "True’ refers to ICP>
20 mmHg. The tree shown is a pruned version (for display
purposes) of the deeper tree that was learned. Units: ABP
[mmHg], CBFV [cm/s] and the ratios are dimensionless.

discarded only 7% of the beats, mainly due to artifacts in
the CBFV signal. It is worth noting that nowadays, due
to the strict treatment protocols, it is quite rare to have ICP
recordings over such large ranges (up to 75 mmHg), which
makes this a highly valuable database.

Results: The RF classifier achieved the best perfor-
mance in terms of sensitivity (69.1%) and had a compara-
ble specificity (78.3%) to the other classifiers. Tables 1 and
2 show the respective confusion matrices on the training
and test data for the RF. Both the linear SVM (sensitivity
56.2% and specificity 77.4%) and the NB classifier (sensi-
tivity 54.4% and specificity 79.1%) were outperformed by
the RF in terms of sensitivity, which is the more relevant
statistical measure when screening patients.

Pred. Pos. Pred. Neg
Cond. Pos. 28.4% 4.0% SES = 87.7%
Cond. Neg. 12.1% 55.5% SPC =82.1%

Table 1. Averaged confusion matrix of RF-based classifi-
cation on the fraining sets along with sensitivity (SES) and
specificity (SPC).

Pred. Pos. Pred. Neg
Cond. Pos. 22.4% 10.0% SES =69.1%
Cond. Neg. 14.7% 52.9% SPC =78.3%

Table 2. Averaged confusion matrix of RF-based classi-
fication on the test sets along with sensitivity (SES) and
specificity (SPC).

4. Discussion and Conclusion

We have presented a supervised learning approach, us-
ing RF, NB and SVM classifiers, for detection of intracra-
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nial hypertension based on non- or minimally-invasive
recordings of ABP and CBFV. In contrast to previous
works that largely relied on a single or a small set of fea-
tures [3] our approach uses eighteen ABP and CBFV fea-
tures. The RF classifier had the best performance in terms
of sensitivity, partly due to the imbalance in the dataset,
which has roughly 30% of patients with intracranial hy-
pertension.

Limitations: We refer the reader to [13] for limitations
pertaining to the data collection. Regarding the predic-
tive power of features, we would like to issue a word
of caution pertaining to all statistical evidence-based ap-
proaches. Given the closed-loop monitoring procedure in
the ICU, where doctors have access to invasive ICP record-
ings, treatment protocols can affect correlations between
ICP and ABP or CBFV features. A common interven-
tion in intracranial hypertension is the administration of
vasopressors. This, in addition to the established increase
in ABP due to elevated ICP [6], could explain in part the
predictive power of the feature ABP,,; (root node in Fig.
1). Along the same lines, 20 mmHg is a clinical cutoff for
treatment, and ICP is actively controlled in the ICU. This
leads to a large number of recordings clustering around this
value, which is detrimental to algorithmic separability and
does not necessarily represent the distribution of ICP val-
ues in untreated patients.

Conclusion and Future Work: The results presented are
promising. However, even though a hard cutoff on sensi-
tivity and specificity is up for debate, significantly higher
values would be required for replacing invasive ICP moni-
toring. Nonetheless, such an approach could be employed
as a screening tool for recommending further checkups
and escalation of care. The RF classifier can easily be ex-
tended to include categorical features, such as annotations
about clinical interventions, the patient’s medical history
and lab results. Given modern multimodal brain monitor-
ing systems, using additional measurements, such as the
optic nerve sheath diameter [14], central venous pressure
or near-infrared spectroscopy recordings, could uncover
potential confounding factors and increase performance of
the classifier further.
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