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Abstract 

This study aimed to characterize the spatial distribution 

of hypertension (HT) clusters in a rural Australian city 

using self-reported HT data collected at a local health-

screening clinic. HT status was recorded for 515 self-

selected participants in a free health-screening program in 

Albury, New South Wales, Australia. We compared 

predictions of HT clusters computed using spatial scan 

statistic and Generalised Additive Model (GAM). We then 

implemented a new approach incorporating sensitivity 

analysis in GAM to combine cluster predictions at multiple 

span sizes. A statistically significant cluster for HT was 

identified in Albury centered to the north of the main urban 

center, with relative risk up to 2.29. The sensitivity analysis 

confirmed the cluster location and highlighted other 

potential HT clusters. Our approach allows detection of 

irregularly-shaped disease clusters and highlights 

potential clusters that may be overlooked using traditional 

methods. This is important in cases using local, small 

datasets where regularly-shaped or overly smoothed 

disease clusters may not provide enough detail to be 

suitable for targeting place-based interventions. 

 

1. Introduction 

Recent statistics for hypertension (HT) in Australia state 

that, in 2014-15, 23% of adults (4.1 million people) had 

measured high blood pressure (BP) [1], a slightly higher 

number than the 21.5% figure reported for 2011-12 [2]. 

Other reports describing HT in Australia mention that high 

BP increases with age [3]; half the people who reported 

having high BP also have heart or circulatory conditions 

[4]; and high BP is the most frequently managed problem 

in Australian general practice [5]. According to the 

HeartWatch Survey carried out in 2011, Australians living 

in rural areas (34.2%) are significantly more likely to have 

high BP than in metropolitan areas (31.3%) [6]. This 

rural/metropolitan dichotomy is increasingly concerning 

for health outcomes in Australia. Although national and 

state health surveys are useful to distinguish metropolitan 

from rural areas in terms of incidence and prevalence of 

major health issues, the data provided is not enough to 

identify the problem at the local scale [7]. For HT (as for 

any other health issues), acting locally with the 

communities to improve health access can prevent 

hospitalizations, improve wellbeing and save money [8]. 

However, collating local health data results in a small 

dataset. Traditionally, epidemiological studies rely on 

large datasets representative of the national population. As 

such, small datasets are often disregarded due to lack of 

representativeness concerns. Acknowledging the 

importance of using local health datasets, we have 

developed an approach to assess whether the spatial 

distribution of self-selected participants at a local health-

screening clinic is representative of the distribution of a 

rural city population [9]. 

The aim of this study is to use the same self-reported 

data to characterize the spatial distribution of HT in 

Albury. Previous studies suggest that in this rural 

Australian city, HT is substantially higher than the state 

and national averages [10, 11]. 

Most studies incorporating a spatial modelling approach 

apply regression algorithms with known risk factors to 

map HT [12, 13]. Others use the spatial scan model 

(SaTScan) [14] to identify HT clusters [15]. Here we 

compare SatScan with the regression-based Generalised 

Additive Model (GAM) [16] to spatially characterize the 

occurrence of HT clusters. Our approach compares these 

two methods and integrates a sensitivity analysis, which 

reports clusters in a more reliable and robust manner than 

traditional GAM.  

 

2. Methods 

2.1. Study area and database 

The study area is the urban area of Albury, a rural city 

in New South Wales, Australia with an urban population 

of 45,512 and an over-45 population of 18,350 ((2011 

figures, [17]) (Fig. 1)). This study focuses on the over-45 

population as a) this can be interpreted as the population at 
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risk and b) our database primarily consists of people aged 

over 45. 

 

 
Figure 1. Location of Albury in Australia 

 

Our dataset comprises 515 clinical data (2.8% of the 

over-45 population of Albury) collected from self-selected 

participants in a free health-screening program [10, 11], 

part of a research project studying chronic disease 

prevalence in rural areas. Amongst other data, presence of 

HT and age were recorded. Presence of HT and population 

over 45 were aggregated to meshblock level (the smallest 

geographical unit in the Australian census – approximately 

30-40 households). 

 

2.2. Spatial modelling algorithms 

The models considered here are GAM [16] and 

SaTScan [14]. We also describe an implementation of 

GAM incorporating sensitivity analysis (GAM-SA). In all 

models we assume the presence of HT in each location is 

Poisson-distributed, and that under the null hypothesis, the 

expected number of cases with HT is proportional to the 

population over 45. All models calculate the relative risk 

(RR) of HT at all locations. 

SaTScan uses circles or ellipses of different sizes and 

calculates a likelihood ratio statistic based on observed and 

expected cases [14]. Scan statistics are used to detect 

clusters by gradually scanning a circular or elliptical 

window across the region and evaluating observed and 

expected number of cases. The window with the maximum 

likelihood is the most likely cluster. For the Poisson model 

the likelihood function is [18]: 
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where cin is the observed number of HT cases inside the 

scan window, E(cin) is the expected number of HT cases 

within the scan window, cout is the observed number of HT 

cases outside the scan window and E(cout) is the expected 

number of HT cases outside the scan window. Monte Carlo 

hypothesis testing is used to calculate the p-value for the 

windows of maximum likelihood, to test whether the null 

hypothesis can be rejected. We implemented spatial 

scanning using the SaTScan program [18]. 

GAM predicts a continuous RR surface of a disease, 

smoothed spatially [16], where statistically significant high 

RR locations can be interpreted as disease clusters. We 

implemented GAM with a Poisson distribution and a log 

link, smoothed for location using a two-dimensional 

LOESS smooth [16]: 

log(𝐸(𝑐𝑖)) = 𝑆(𝑥𝑖 , 𝑦𝑖) + log(𝑛𝑖)  (2) 

where E(ci) is the expected number of HT cases in 

meshblock i, S is a smooth function at the centroid of 

meshblock i with coordinates xi and yi, and ni is the 

population aged over 45 in meshblock i. The optimal span 

size was determined by minimizing the Akaike’s 

Information Criterion (AIC) – span is specified as 

proportion of data points used to define the analysis 

neighborhood, and the larger the span, the smoother the 

surface. Prediction significance was tested using 1000 

permutations to estimate p-values. Clusters were defined 

as areas where the lower limit of the RR 95% confidence 

interval is greater than 1 [9, 19]. GAM was implemented 

using the MapGAM package [20] in R [21]. 

We applied sensitivity analysis to GAM (GAM-SA) by 

comparing cluster predictions at multiple span sizes, 

instead of just the optimal span size. We performed the 

algorithm for span sizes ranging from 0.05 to 0.95 at 

intervals of 0.05 and identified presence of clusters and RR 

within clusters at each span size. We then averaged the RR 

over multiple span sizes with the clusters to identify 

locations within the clusters that have consistently high RR 

at multiple span sizes. 

 

3. Results 

SaTScan returned an identical HT cluster for both 

circular and elliptical windows (Fig 2). Although both 

window shapes calculated the RR as 2.13 (Table 1), the 

calculated p-value differed. Smaller secondary clusters 

were also identified but they were not statistically 

significant. 

 
Figure 2. HT cluster identified using SatScan (both circular 

and elliptical windows). 

 

The optimal span size for GAM determined using AIC 

was 0.6. From this statistically significant clusters were 

identified as described above. A single cluster was 

identified (Fig. 3), with RR ranging from 1 to 2.07.  
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Figure 3. HT RR surface identified using GAM  

 

Applying sensitivity analysis to GAM produced a mean 

RR surface across multiple span sizes (Fig. 4), ranging 

from 1 to 2.29. The areas outlined in black show potential 

cluster locations not calculated using GAM at optimal span 

size only. A cluster reliability surface was also calculated 

(Fig. 5). All areas identified as potential clusters in Fig. 4 

are outlined in black. Overlapping areas of high RR and 

high cluster reliability can be interpreted as stable clusters, 

i.e. these locations are statistically significant high RR 

areas at the majority of span sizes. 

 

 
Figure 4. HT mean RR using GAM-SA. Black outlines 

show potential clusters not identified in Fig. 3. 

 

 
Figure 5. HT cluster reliability GAM-SA. Black outlines 

show all potential clusters. 

 

For each method only statistically significant (p < 0.05) 

clusters are displayed. Table 1 also shows the RR 

calculated for each method. SaTScan returns a single RR 

value, while GAM has continuous values of RR within 

each cluster – the maximum RR value is shown here. 

 

Table 1. Relative risk and associated p-values 

Cluster RR p 

SatScan – circular window 2.13 0.00037 

SatScan – elliptical window 2.13 0.001 

GAM – optimal span 2.07 < 0.05 

GAM – sensitivity analysis 2.29 <0.05 

 

4. Discussion 

The three methods (SaTScan, GAM and GAM-SA) all 

found a single statistically significant cluster for HT in 

Albury centered to the north of the main urban center, with 

all methods agreeing on the approximate location. The 

cluster detected using GAM was more elliptical in shape, 

however the maximum RR within the cluster was smaller 

than that both with SaTScan and GAM-SA. GAM-SA 

calculated highest RR within the main cluster. This also 

shows that although 0.6 was selected as the optimal span 

size across the entire study area using GAM, other span 

sizes identified higher RR in the cluster area, resulting in a 

higher mean RR across all span sizes using GAM-SA. 

SaTScan is commonly used for disease clustering 

analysis, but has been criticized for its lack of flexibility in 

window shape [22]. Circular windows often overstate the 

true region of disease clustering. Elliptical windows may 

alleviate this issue by allowing more targeted shapes, but 

in this case a circular cluster was still identified even when 

allowing for ellipses. Although the cluster shape identified 

using GAM was still elliptical, the core shape (darkest 

areas) identified using GAM-SA was more irregular. 

Another concern with SaTScan is the influence of the 

maximum window size [22]. 

GAM has been found to outperform SaTScan when 

clusters are irregularly shaped [23]. In addition, GAM 

returns a continuous surface of RR values, while SaTScan 

returns a single number within each cluster. This implies 

RR is homogenous within a cluster, which is unlikely to be 

the case. Many studies using GAM to detect clusters 

simply visualize the RR surface, although contours are 

sometimes included to show which regions are statistically 

significant. Our method of selecting only statistically 

significant clusters for both GAM and GAM-SA allows 

more targeted visualization and analysis. 

The single span size used in GAM also means that the 

RR surface may be overly smoothed, meaning small local 

clusters may be missed. By applying GAM-SA we can 

assess the presence and RR values of clusters across all 

span sizes, highlighting further potential clusters. For 

example, there are small connected regions to the north and 
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south of the main cluster that have a lower mean RR (~1.3) 

and lower reliability (~0.5) but are worth investigating as 

potential HT clusters. These regions were discarded as 

being not statistically significant in GAM with optimal 

span, and were also not included in the SaTScan cluster. 

Both SaTScan and GAM take background population at 

risk into account, in this case population aged over 45. The 

assumption is that the survey database is spatially 

representative of the population at risk. In a rural city with 

self-selected survey participants this is difficult to achieve, 

however GAM can be also be applied to test this 

assumption [9]. Previous analysis [9] shows that the 

existing database is largely spatially representative of the 

over-45 population in Albury, and therefore the HT 

clusters detected in the current research are reliable. 

However the analysis could be further extended to take 

regions of over- and underrepresentation in the survey 

database into account. Future research will compare 

disease clusters with spatial biases in the database and 

investigate methods to correct for this. 

The identification of disease clusters is an initial step in 

spatial analysis of disease mapping. Further research will 

model HT and other diseases taking social and 

environmental risk factors into account. This analysis will 

allow us to examine the drivers of disease at a local spatial 

level in a rural city, which is a key missing component in 

the body of research on disease mapping in Australia. 
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