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Abstract 

In this study, we performed a new multivariate fuzzy 

measure entropy (mvFME) analysis on the recorded 

multivariate systolic, diastolic and RR interval time series. 

Twenty healthy young male subjects (24.2±1.9 years) 

were enrolled. For each subject, both ECG and aortic 

phonocardiogram (PCG) signals were simultaneously 

recorded for 5 minutes, under two physiological states 

respectively: rest and after stair climbing. RR interval 

time series were constructed from locating QRS 

complexes in ECG signal by Pan & Tompkins method. 

Systolic and diastolic time series were constructed from 

identifying the beginning of the first and second sound in 

PCG signal by Springer’s hidden semi-Markov model 

segmentation method. The results showed that, compared 

with rest state, after stair climbing state has significant 

lower mvFME values for both univariate and multivariate 

time series analysis (all P<0.01, except univariate 

systolic time series with P<0.05). The mean mvFME 

values decreased from using univariate to multivariate 

time series for both rest and after stair climbing states. 

This study shows physical activity changes the coupling 

relationship in cardiac interval time series. Meanwhile, 

coupling between RR and systolic time series reports 

larger mvFME values than coupling between RR and 

diastolic time series. 

 

1. Introduction 

Quantitative analysis of the variability of RR interval 

time series, i.e., heart rate variability (HRV) analysis, 

provides an estimate of autonomic nerve control of the 

heart and is an important tool for evaluating the function 

of cardiovascular (CV) system [1]. RR interval consists of 

systolic time interval (STI) and diastolic time interval 

(DTI), whose time series also present the variability 

characteristics. Liu et al. studied the univariate HRV, STI 

variability (STIV) and DTI variability (DTIV), and 

reported that compared with STIV, DTIV is more obvious 

to follow the change of HRV [2].  

The complex dynamical behavior of CV system is not 

only reflected within the single time series, but more 

importantly to be reflected across multiple data channels. 

The coupling relationship between RR and STI time 

series were analyzed using a multivariate sample entropy 

(mvSE) method [3-5]. In 2016, Zhao et al. proposed a 

new multivariate fuzzy measure entropy (mvFME) 

analysis for analyzing multivariate RR interval, first (S1) 

and second (S2) heart sound amplitude time series [6], 

and the new mvFME method showed better statistical 

stability and discrimination ability for multivariate time 

series analysis than the traditional mvSE method.  

In this study, we performed the new mvFME analysis 

on multivariate RR, STI and DTI time series, to compare 

the mvFME differences between two physiological states: 

rest state and after stair climbing state.  

 

2. Methods 

2.1.  Subjects 

Twenty healthy young male subjects (24.2±1.9 years) 

were enrolled in this study. All subjects gave their written 

informed consent, and confirmed that they had not 

participated in any other „clinical trial‟ within the 

previous three months. The study obtained a full approval 

from the Clinical Ethics Committee of the Second 

Hospital of Dalian Medical University and all clinical 

investigation was conducted according to the principles of 

expressed in the Declaration of Helsinki. Table 1 depicts 

the details for the involved subjects. 

Table 1. Demographic data for the subjects studied. 

Variables Values 

Age (year) 24.2 ± 1.9 

Height (cm) 174 ± 4 

Weight (kg) 64 ± 7 

HR (beats/min) 69 ± 9 

SBP (mmHg) 121 ± 9 

DBP (mmHg) 65 ± 7 

Note: data are expressed as mean ± standard deviation 

(SD). HR: heart rate, SBP: systolic blood pressure, DBP: 

diastolic blood pressure. 

Computing in Cardiology 2017; VOL 44 Page 1 ISSN: 2325-887X  DOI:10.22489/CinC.2017.329-121 

  



2.2.  Experimental procedure 

For each subject, standard limb lead-I ECG and 

phonocardiogram (PCG) signals were simultaneously 

recorded with a sample rate of 2,000 Hz. PCG signal was 

recorded by the microphone sensors (MLT201, AD 

instrument, Australia) at the aortic auscultation positions 

[7; 8]. Signals were firstly recorded for about 5 minutes at 

rest state. Then the subject was asked to do the activity of 

stair climbing for 120 stairs. After the stair climbing, the 

subject was asked immediately to start the signal 

recording for another 5 minutes. Before signal recording, 

each subject had a rest for 10 minutes. Heart rate (HR) 

and blood pressure (BP) values, including systolic blood 

pressure (SBP) and diastolic blood pressure (DBP), were 

measured by an automatic electronic sphygmomanometer 

(HEM-7200, OMRON, Japan). 

 
Figure 1. Simultaneously recorded ECG and phonocardiogram (PCG) signals. The detected R-wave peaks are denoted as 

“●”, the onset of the first and second heart sounds are denoted as “▼” and “▲” respectively. 

 

 
Figure 2. Example of RR, STI and DTI series from a subject during the two states for 200 beats. 
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2.3.       Signal processing 

ECG signal was firstly filtered using a 0.05-40 Hz 

band-pass filter. Pan & Tompkins method [9] was used to 

locate the R peaks and thus the RR interval time series 

were constructed. RR intervals with ectopic beats were 

detected and excluded using the combination method [10]. 

PCG signals were firstly filtered using a 20-200 Hz band-

pass filter. Then Springer‟s hidden semi-Markov model 

(HSMM) segmentation method [11] was used to segment 

each PCG signal to detect the onsets for S1 and S2 heart 

sounds. Figure 1 shows waveform examples, and the 

corresponding R peak location, the onsets of the first (S1) 

and second (S2) heart sounds. Finally, RR, STI (the 

interval between the onsets of S1 and S2 in the current 

heart circle) and DTI (the interval between the onset of S2 

in the current heart circle and the onset of S1 in the next 

heart circle) were constructed. Figure 2 shows the 

examples from both rest and after stair climbing states. 

For each time series, only the first 200 beats were shown. 

 

2.4.  Multivariate fuzzy measure entropy 

mvFME method was recently developed from the 

fuzzy measure entropy (FuzzyMEn) by Liu et al [12; 13]. 

The details of the calculation process can refer to [6]. We 

did not detail the calculation process here. The parameter 

setting for mvFME used the suggested values in our 

previous studies [14; 15]. mvFME is the same as the 

FuzzyMEn for univariate time series analysis. In this 

study, the CV time series used for mvFME analysis are 

summarized as:  

 Univariate: RR, STI and DTI; 

 Bivariate: RR & STI, RR & DTI and STI & DTI; 

 Trivariate: RR & STI & DTI. 

 

2.5.  Statistical analysis 

The overall means and SDs of mvFME were obtained 

separately for the two physiological states, i.e., rest state 

and after stair climbing state. The differences between the 

two states were compared using a student's t-test (SPSS 

19.0 software package). A value of P<0.05 was 

considered statistically significant.  

 

3. Results 

Figure 3 and Table 2 give the mvFME results from the 

univariate, bivariate and trivariate time series for both rest 

and after stair climbing states. All mvFME values in the 

after stair climbing state were significant lower than those 

in the rest state (all P<0.01, except for the univariate STI 

series P<0.05). The compared results of mvFME in rest 

and after stair climbing states were: 2.17±0.34 vs. 

0.93±0.37 for RR, 1.83±0.28 vs. 1.51±0.50 for systolic, 

2.05±0.48 vs. 1.32±0.52 for diastolic, 1.71±0.24 vs. 

0.76±0.22 for RR & systolic coupling, 1.53±0.33 vs. 

0.71±0.28 for RR & diastolic coupling, 1.63±0.29 vs. 

0.92±0.30 for systolic & diastolic coupling, and 

1.22±0.23 vs. 0.60±0.19 for all three time series coupling. 

For both rest and stair climbing states the mean 

mvFME values decreased from using univariate to 

multivariate time series (Figure 3 and Table 2).  

 

 
Figure 3. Statistical results of the univariate mvFME (A), 

bivariate mvFME (B) and trivariate mvFME (C) for the 

two physiological states. 

Table 2. Results (mean ± SD) and statistical P-values of 

the univariate and multivariate mvFME for the rest and 

after stair climbing (ASC) states. 

Time series Rest ASC P-values 

Univariate    

RR 2.17 ± 0.34 0.93 ± 0.37 <0.01 

STI 1.83 ± 0.28 1.51 ± 0.50 <0.05 

DTI 2.05 ± 0.48 1.32 ± 0.52 <0.01 

Bivariate    

RR & STI 1.71 ± 0.24 0.76 ± 0.22 <0.01 

RR & DTI 1.53 ± 0.33 0.71 ± 0.28 <0.01 

STI & DTI 1.63 ± 0.29 0.92 ± 0.30 <0.01 

Trivariate    

RR & STI & DTI 1.22 ± 0.23 0.60 ± 0.19 <0.01 

 

4. Discussions 

In clinical practice, STI and DTI can be easily acquired 

by simultaneously recording ECG and PCG signals. PCG 

signal processing has been a concern since the success of 

the PhysioNet/Computing in Cardiology Challenge 2016 
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[16; 17]. This study analyzed the coupling characteristics 

for RR, STI and DTI time series under two physiological 

states. The decrease of the univariate mvFME in the stair 

climbing state confirms the significant complexity loss in 

RR, STI and DTI time series. It is worth to note that the 

decrease of complexity in HRV is mainly from the 

decrease in DTI time series.  

The bivariate and trivariate mvFME values in the stair 

climbing state were also significantly lower than those in 

the rest state, indicating that the decrease of the cross-time 

series coupled dynamics. When using the multivariate 

(bivariate or trivariate) mvFME, the statistical 

significances between the two physiological states 

increased, confirming that the multivariate analysis could 

give a better understanding of the underlying CV system 

dynamics. 

 

5. Conclusion 

This study used the recently introduced mvFME 

method to analysis both the univariate and multivariate 

CV time series variability and to compare the differences 

between the rest and stair climbing states. The results 

indicate that physical activity changes the coupling 

relationship in cardiac interval time series. Meanwhile, 

coupling between RR and systolic time series reports 

larger mvFME values than coupling between RR and 

diastolic time series. 
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