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Abstract 

Fetal phonocardiography (fPCG) is a clinical test to 

assess fetal wellbeing during pregnancy, labor and 

delivery. Still, its interpretation may be jeopardized by 

the presence of noise. Specifically, fPCG is typically 

corrupted by maternal heart and body organs sounds, 

fetal movements noise and surrounding environment 

noise. Thus, appropriate filtering procedures have to be 

applied in order to make fPCG clinically usable. Wavelet 

transformation (WT) has been proposed to filter fPCG; 

however, WT robustness to noise remains unknown.  

Thus, aim of the present work is to evaluate WT ability 

and robustness to denoise fPCG characterized by varying 

signal-to-noise ratios (SNR). To this aim a filtering 

procedure based on Coiflets mother wavelet (4
th

 order, 7 

levels of decomposition) was applied to 37 fPCG 

simulated tracings, all available in the Simulated Fetal 

PCGs database by Physionet. Original SNR values 

ranged from -1.38 dB to 4.54 dB; after application of 

WT-filtering procedure to fPCG, SNR increased 

significantly, ranging from 12.95 dB to 17.94 dB (P<10
-

14
). Moreover, SNR values before and after filtering were 

associated by a low correlation (ρ=0.4; P=0.01). 

Eventually, WT filtering introduced no fPCG signal delay 

and left heart rate unaltered. Thus, WT filtering is a 

suitable and robust technique to denoise fPCG signals. 

 
1.  Introduction 

Continuous and long-term fetal monitoring is essential 

for better accuracy in diagnosis [1]. Traditional non-

invasive monitoring techniques (cardiotocography, fetal 

electrocardiography and ultrasound scan) allow a visual 

analysis of the fetal status, but appear sophisticated, 

expensive and operator-dependent [2-5]. An alternative 

approach is found in the fetal PhonoCardioGraphy 

(fPCG), which consists in the non-invasive recording of 

the acoustic sounds occurring during the fetal cardiac 

cycle through the abdomen of the mother [6]. Typically, 

there are two fetal heart sounds: the first heart sound (S1), 

that represents the closure of atrio-ventricular valves; and 

the second heart sound (S2), that represents the closure of 

semilunar valves. Considering its physiological meaning 

and its suitability, fPCG is potential clinically useful test 

to evaluate fetal heart rate (fHR) during pregnancy and to 

assess fetal wellbeing during pregnancy, labor and 

delivery [7,8].  

Clinical fPCG interpretation may be jeopardized by the 

presence of various types of noise typically affecting it. 

Indeed, fPCG is a linear summation of fetal heart sounds, 

internal noise and external noise. The internal noise is a 

random signal caused by fetal movement, fetal breathing, 

maternal respiratory sounds, maternal digestive sound, 

maternal heart sound, placental blood turbulence. These 

noises are of low amplitude with main frequency 

components from 0 to 25 Hz [9]. Similarly, the external 

noise is a combination of shear noise from movement of 

the sensor during recording and environmental noise such 

as sound produced by fan, air conditioner, hue and cry of 

the nearby people, additional components result from 

powerline interference, reverberation noise and 

background noise [9]. It is comparatively of high 

amplitude and frequency. As it is heavily contaminated 

by noise, fPCG processing implies mandatory filtration of 

these noise components. Thus, appropriate filtering 

procedures have to be applied in order to make fPCG 

clinically usable and to extract important diagnostic 

information, such as fHR.  

Wavelet transformation (WT) has been proposed to 

denoise fPCG. WT is an advanced signal processing 

technique that maps a time domain waveform into 

frequency-time domain waveform by providing a good 

localization in both time and frequency domains [7]. In 

this way, WT is an effective method to analyze the 

information of non-stationary signals providing a time- 

frequency localization which is useful to detect various 

signal information in both normal and pathological 

conditions [10]. In literature, WT is a well-known de-

noising technique in the fPCG signal processing [7]; 

however, WT robustness to noise remains unknown.  

Thus, aim of the present work is to evaluate WT ability 

and robustness to denoise fPCG affected by varying level 

of noise in order to correctly extract fHR.  
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2. Material and Methods 

2.1 Simulated Data 

Clinical data consisted of 37 fPCG simulated tracings 

corrupted by different levels of noise (i.e. characterized 

by different signal-to-noise ratios; SNR), as in real 

recordings. Simulated PCG were generated (sampling 

frequency: 1kHz) as sequences of simulated S1 and S2 

heart sounds to which corrupting noise was added. Noise 

is a sum of different contributions: maternal heart sounds, 

maternal body organs sounds, fetal movements, 

surrounding environment and additive white Gaussian 

noise. All fPCG are 8 min long, characterized by a fHR of 

140 bpm and belong to the “Simulated Fetal PCGs 

database” [6,11] of PhysioNet [12] freely accessible on 

the web under the ODC Public Domain Dedication and 

License v1.0.  

 

2.2 Wavelet Transformation Filtering 

All fPCG signals were processed by means of 

continuous Wavelet Transform (WT).  

WT is a time-frequency analysis method that quantifies 

temporal changes of the frequency content of non-

stationary signals without losing resolution in time or 

frequency [13]. WT of the input signal x(t) is defined as 

the inner product (Eq. 1): 

 

0a(t)dt   x(t)ΨWT *
ba,b)x(a,     (1) 

where the basis function (t)Ψ ba,  is the mother wavelet, 

featured by scale and shift parameters, a and b 

respectively. (t)Ψ ba, can be expressed as (Eq. 2): 
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where a represents the scale parameter, b represents the 

translation parameter (time shifting), and (t)Ψ ba,  is 

obtained by the mother wavelet function Ψ(t)  at time b 

and scale a. In terms of frequency, the multiresolution 

analysis provides global information of the signal 

corresponding to low frequencies and detailed 

information associated to high frequencies [14].  

WT decomposes a signal into several multiresolution 

components (coefficients), and performs a series of high- 

and low-pass filter operations followed by down-

sampling. Thus, the signals were decomposed into its 

frequency content form and then were reconstructed. 

The fPCG signal is interfered by various noises with 

unknown spectral and temporal characteristics. Thus, a 

filtering procedure based on WT was applied to 

decompose the corrupted signal into several levels. The 

decomposition processing allows to remove the 

corrupting decomposed level to improve SNR. 

In this work, mother wavelet Coiflets of 4
th

 order with 

7 levels of decomposition was used, since a preliminary 

still unpublished work indicated that this is the wavelet 

which provided best results for fPCG denoising. The flow 

chart of the denoising algorithm is reported in Figure 1.  

 

2.3 Statistics 

SNR values characterizing each fPCG were computed 

according to the following definition (Eq. 3):  
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where PeakToPeakfPCG is a signal-measure representing 

maximum-minus minimum amplitudes of the S1 and 

std(fPCG) is a noise-measure representing the fPCG 

standard deviation. SNR values were computed before 

(SNRbefore) and after (SNRafter) WT filtering.  

In order to evaluate association between two fPCG 

characterizing variables, the Pearson correlation 

coefficient (ρ) and the regression line where computed. 

Non-normal variable distributions were described in 

terms of 50th [25th; 75th] percentiles and comparted 

using the Wilcoxon Rank-Sum test for equal medians. 

Statistical significance was set at 0.05 in all cases.  

 

3. Results 

A qualitative example of raw and denoised fPCG 

signal is reported in Figure 2 that displays row fPCG 

signals with different levels of noise (left column of 

panels) and corresponding denoised fPCG signals after 

WT filtering (right column of panels), respectively.  

 

  
 

Figure 1. Panel A: WT-filtering block diagram; panel B: 

WT decomposition of fPCG signal. 
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SNRbefore values ranged from -1.38 dB to 4.54 dB 

and its distribution (0.15 dB [-0.60; 1.91]) was found to 

be characterized by a significantly lower value than 

SNRafter (15.86 dB [15.21; 16.27]; P<10
-14

), which 

ranged from 12.95 dB to 17.94 dB. In addition, fPCG 

signals before WT denoising were perfectly aligned to 

those obtained after filtering and fHR remained unaltered 

(140 bpm). Eventually, SNRbefore and SNRafter were 

associated by a low correlation (ρ=0.4) but significant 

(P=0.01) correlation. Regression line was 

SNRafter=0.55∙SNRbefore+14.95 (Figure 3). 

 

4. Discussion 

Aim of this study was to evaluate WT ability to 

denoise fPCG, varying SNR. To this aim, “Simulated 

Fetal PCGs database” [6,11] of PhysioNet [12] containing 

37 simulated fPCG affected by different levels of noise.  

According to Physionet characterization of fPCG signals, 

SNR ranged from -26.7 dB and -4.4 dB. However, since 

original simulated fPCG signals and noise amplitudes 

were not available to reproduce such SNR values, these 

were recomputed as in Eq. 3.  

Original  and  recomputed  SNR  values  did not match 

 

 

Figure 2. Raw fPCG signals affected by different levels of noise (right columns of panel) and corresponding denoised 

fPCG signals (right column of panels) after WT filtering.  
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Figure 3. Association between SNR values before and 

after WT filtering. 

 

numerically but were perfectly correlated (ρ=1.0; P<10
-

200
), indicating that they provide the same amount of 

information.  

To denoise fPCG signals, WT with Coiflets mother 

wavelet (4
th

 order, 7 levels of decomposition) was used. 

As shown in Figure 2, which qualitatively depicts 

denoised fPCG signals for several SNR, noise level was 

drastically reduced and S1 becomes always visible; still, 

some noise survived to filtration, especially in signals 

initially characterized by very low SNR. Denoised fPCG 

were perfectly aligned (same S1 location) and fHR values 

were unaltered, valid sign of how WT filtering introduces 

no signal delay and thus maintains unaltered fPCG 

clinical characteristics based on fHR. Eventually, WT 

filtering significantly increased SNR values (P<10
-14

). 

Moreover, SNR values before and after WT filtering were 

associated by a low correlation coefficient, indicating that 

WT filtering is very robust to noise (low slope, Figure 3). 

Future studies will have the aim to test the proposed 

WT-filtering procedure on real fPCG in order to confirm 

its clinical utility. Moreover, different mother wavelets 

and/or different decomposition levels will be tested in 

order to further confirm which is the optimal filtering 

configuration method for denoising fPCG signals. 

 

5. Conclusion 

Filtering based on WT with mother wavelet Coiflets of 

4
th

 order with 7 levels of decomposition is a suitable and 

robust technique to denoise fPCG signals since maintains 

unaltered fundamental fPCG features, like fHR and S1 

time-location. 
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