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Abstract

Atrial fibrillation (AF), one of the most common cardiac
arrhythmias, can be diagnosed using electrocardiography.
We present a data-driven model to automatically detect the
occurrence of atrial fibrillation on a single lead electro-
cardiogram (ECG). Our model incorporates a wide range
of features including heart rate variability in the time and
frequency domain, spectral power analysis and statisti-
cal modeling of atrial activity. We use an over-sampling
strategy to balance the dataset across different categories.
We design a hierarchical classification model to predict an
ECG signal as either AF, normal, noisy or an alternative
rhythm. The best performance was achieved with a hier-
archical bagged ensemble classifier, with an average F1

score of 0.7855 over all samples.

1. Introduction
Atrial fibrillation (AF) is a very common arrhythmia as-

sociated with serious heart-related complications including
stroke and heart failure [1]. The incidence of AF increases
with age and presence of chronic health conditions. Elec-
trocardiography is currently the gold standard in the di-
agnosis of AF, since it accurately captures the electrical
activity of the heart [2]. It is very difficult to diagnose
AF during routine in-office visits, since symptoms occur
in episodes [1].

Recent approaches have been considered to address the
high mortality rate and low efficacy in detection of AF
[2]. AF detectors allow for earlier screening and identi-
fication of AF compared to manual methods. Current al-
gorithms are mostly based on ventricular response and/or
atrial activity analysis. Recent work has found several fea-
tures that characterize AF including heart rate variability,
wavelet entropy, and p-wave detection [3]. However, the
application of current AF detection methods to clinical set-
tings are limited [4]. In previous studies, classification
was performed only on clean data. However, noise is in-
evitable in continuous-monitoring settings, due to lead de-
tachment, respiration, or motion. In addition, such clas-
sification was performed to only distinguish AF signals

Figure 1. Representative ECG waveforms for each cate-
gory: (A) normal rhythm, (B) atrial fibrillation rhythm, (C)
alternative rhythm and (D) noisy signal.

from normal signals [4]. Since AF is often misdiagnosed
as other arrhythmia types, classification of AF against an
alternative rhythm would help in making the detector more
robust.

We use the data provided by the AliveCor device, avail-
able from PhysioNet [5]. In this data set, 8,658 single lead
ECG signals were collected lasting from 9 s to 60 s. The
signals were recorded at a rate of 300 Hz and have been
bandpass filtered. The data is imbalanced in regards to the
number of signals per classification category. The largest
categories include normal rhythm and alternative rhythm
signals, and only a limited number of signals are included
in AF and noisy categories. This sample distribution re-
flects a real-world data set, where only a small percentage
of abnormal examples are available. We use a synthetic
minority over-sampling technique (SMOTE) to oversam-
ple the minority class/es, thereby increasing the sensitivity
of our classifier [6]. Figure 1 shows representative signals
from each of the classification categories.

2. Methods
A machine learning model is presented for the classifi-

cation of provided ECG signals into four different rhythm
types. In this section, we first elucidate our strategy to
extract different features and then describe how we are ad-
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dressing the issue of class imbalance. Finally, a description
of the proposed model is presented to classify extracted
features into four different classes.

2.1. Feature Extraction
A set of numeric features are extracted from the raw

ECG signals. We broadly categorize feature extraction
into three main feature subsets: ventricular response, atrial
activity, and raw ECG signal features. 17 ventricular re-
sponse features are selected based on time and frequency
domain analysis of RR-intervals. 4 atrial activity features
are selected based on the p-wave morphological analysis.
Raw ECG signals are then processed into 7 features. Ad-
ditional statistical features (maximum, minimum, mean,
variance) are also included. In total, 60 features are ex-
tracted from the ECG signal.

2.1.1. Ventricular response features
We extract ventricular response features to address the

irregular nature of atrial fibrillation rhythm. These are
extracted from the timing of heartbeats (RR-intervals) in
ECG signal. Extracted time-domain features for character-
izing ventricular responses:
• Average of all heartbeats (RR-intervals)
• Ratio of heartbeats considered normal
• Standard deviation of all heartbeats
• RMS difference between heartbeat intervals
• Ratio of heartbeat intervals differing by > 50 ms
• Maximum heartbeat length
• Minimum heartbeat length
• Average peak of heartbeat peaks
• Standard deviation of all heartbeat peaks

Extracted frequency-domain features characterizing
ventricular responses:
• Total spectral power, up to 0.04 Hz
• Total spectral power, 0 to 0.003 Hz
• Total spectral power, 0.003 to 0.04 Hz
• Total spectral power, 0.04 to 0.15 Hz
• Total spectral power, 0.15 to 0.40 Hz
• Ratio of high to low frequency power
• Average spectral power of RR-intervals

Besides these features, we also incorporate multiscale
entropy analysis of RR-intervals to account for signal com-
plexity.

2.1.2. Atrial activity features
As atrial fibrillation is characterized by the lack of visi-

ble p-waves [7], we extract atrial activity features from the
morphology of p-waves. Statistical modeling of p-wave
features is used to quantify morphological features and de-
tect p-wave absence in atrial fibrillation. The p-waves are

Figure 2. ECG sample distribution plot, showing the num-
ber of ECG samples present in the data subset of each
class.

segmented into six pieces and the mean amplitude is cal-
culated. Statistical features calculated from the extracted
p-wave amplitudes are:
• Variance of p-wave segment means
• Skewness of p-wave segment means
• Kurtosis of p-wave segment means
• Average of p-wave peaks

2.1.3. Other ECG features
We extract different features relating to power spectrum

from the signal amplitude as the ECG signal features.
• Average spectral power from signal
• Variance of spectral power from signal
• Average spectral power from signal
• Variance of spectral power from signal

We also calculate root mean square fluctuation for the
integrated and detrended time series. This reveals the long-
range correlations in the raw ECG time series. Finally, fast
Fourier transform is also calculated from the raw signal.
• Root mean square fluctuation of time series
• Average total power of time series
• Variance of total power of time series

2.2. Class imbalance
Building machine learning models using skewed

datasets is a challenging task. In the current task of AF
classification, the class imbalance prevalent in our dataset
can be visually seen in Fig 2. Different techniques [8],
[6], have been proposed to address the issue of class im-
balance where most of them are by re-sampling the dataset
to offset the imbalance. Depending upon the task in hand,
majority class(es) are down-sampled or minority class(es)
are up-sampled. Each of these techniques has their own
merits and demerits, but one striking disadvantage might
be the loss of information when down-sampling a dataset.
As such we are using SMOTE (Synthetic Minority Over-
sampling Technique) [6] for increasing the sample size
of the minority classes. By generating such samples, the
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Figure 3. Illustrative diagram of the proposed hierarchi-
cal architecture. Binary classification is performed at each
hierarchy stage.

learner or classifiers is able to broaden its decision regions
for the minority class.

We apply SMOTE by making the pairs involving each
minority class with majority class. Let Xi represents the
sample from class ci. If ck represents the majority class
then pairs like (Xk, Xi) such that k 6= i are formed and
SMOTE is applied on each pair. At the end of this process,
each of the minority classes will have a same number of
samples as the majority class ck.

2.3. Hierarchical classification
Hierarchical classification is relevant when some classes

of similar objects are related to one another compared to
other classes. Classification between one class and the re-
maining classes is performed in each hierarchy and after
each stage, the lone class is dropped as shown in Fig3. As
such, each classifier is responsible for binary classification.
In this setup, we need to train k − 1 different models for
classifying the k number of classes.

Three models are trained independently for our ex-
tracted feature data set. A hierarchical model is a stack of
these independently trained classifiers, as shown in Fig 3.
At each stage, the classifier divides the data into two parts.
Let Xi

n, represents data where n is the number of samples
and i is the set of classes present in X. Mk represents the
model used at the kth stage of the hierarchy. When Xi

n is
the input for the kth stage of the hierarchical model, the
data is divided into two parts by model Mk: Xp

n1
and Xq

n2.
Here, n1 + n2 = n and p + q = i. Also, p contains only
one of the classes present in set i whereas q contains all
of the remaining classes at that hierarchy stage. After ex-
tensive experiments with various classifiers, we achieved
the best results with AdaBoost, Bagging and Robust Boost
respectively in each of the three hierarchy

AdaBoost: AdaBoost [9] is a classification technique

which uses a combination of weak classifiers to create a ro-
bust classifier. AdaBoost is much more resistant to over fit-
ting than other simple classifiers, making it one of the ideal
choices for classification. AdaBoost works by initially as-
signing every sample the same weight. A base classifier
then classifies the samples and assigns the higher weight
to misclassified samples. Finally, a new base learner is
used to classify the samples with new weights and the pro-
cess continues until a high accuracy is achieved or until the
model’s performance saturates.

Bagging: Bagging, also known as Bootstrap Aggrega-
tion [10], is a technique for generating multiple versions
of the classifier model and uses a majority vote to classify
samples. It also helps in reducing errors generated by fluc-
tuations in the training samples. Given a dataset with n
samples, bagging samples m new datasets having n′ sam-
ples. For each new dataset, a model is generated. Finally,
the m models are aggregated by taking the majority vote.

Robust Boost: Robust boost [11] is able handle data
consisting of noisy labels better than other boosting algo-
rithms (i.e. AdaBoost). The objective of Robust boost is to
minimize the margin based cost function. Robust boost is
much less sensitive to noise when compared to other boost-
ing algorithms.

3. Experiments

Signal analysis and feature extraction is performed us-
ing the WFDB Software Package applications [12]. First,
the QRS complexes within the electrocardiographic sig-
nals are annotated using the gqrs application. P-waves
are annotated using the ecgpuwave application. Heart rate
variability analysis is performed using the HRV Toolkit.
Multiscale entropy analysis is performed using the mse
and sampen applications. The spectral analysis utilized the
DFA software [13] for detrended fluctuation analysis and
the fft application for fast Fourier transformation. QRS
waveform boundary recognition is performed using ecg-
puwave to find the onset and offset of p-waves in each
signal. Power spectrum analysis is carried out using the
lomb and memse of WFDB applications. SMOTE, used to
address class imbalance, was performed using a Python-
based library, imbalanced-learn [14]. Finally, the pro-
posed hierarchical model was designed using MATLAB.

We trained various hierarchical models using differ-
ent combinations of classifiers throughout the hierarchy.
The best hierarchical model is chosen based on F1 score
performance. The hierarchical model is also compared
against the four-class classification model (flat classifica-
tion). Since binary classification is performed at each hier-
archical stage, the classifiers that performed best could not
be directly applied to perform multi-class classification.
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Table 1. F-score for each individual classes along with
average score for all the classes.

Method Noise Normal AF Other Combined
Flat classification 0.75 0.8049 0.8276 0.5038 0.7216

Hierarchical 0.8254 0.8690 0.7250 0.6286 0.7620
Hierarchical + SMOTE 0.8522 0.7826 0.7023 0.8049 0.7855

3.1. Model training
The provided challenge dataset [5] includes both the

training and validation set. However, the validation set
was provided only to verify the implementation correct-
ness during the submission and includes the same data
from the training set itself. As such, we manually removed
the validation set from the training set to ensure the testing
of our model is performed on a held-out set.

3.2. Results
The results of the experiments are recorded in Table 1.

The presented results include F1 score for each individual
class along with the average score for all the classes. The
average F1 score recorded using the hierarchical model is
0.7620, 5% increment over the result from the flat classi-
fication. Further improvement of around 3% is observed
after addressing class imbalance (with SMOTE) taking av-
erage F1 score to 07855. Comparing individual F1 score,
we can observe increment in predictability for noisy sig-
nals and an alternative rhythm. This however, seems to be
affecting the prediction ability for normal and AF rhythm.

4. Discussion
In this current work, we are using a total of 60 features

with all features having equal weight. In future work, fea-
ture importance analysis could be performed to drop or add
more extracted features in order to improve the predicting
capability of the model. In addition, analyzing a subset of
features important at each hierarchy would help in creat-
ing better models. We also plan to investigate the drop in
performance for AF rhythm as seen by using hierarchical
models. Finally, automatic feature extraction can be per-
formed using deep networks. We believe augmenting such
automatically extracted features with our extracted feature
set would further improve the models’ performance.

5. Conclusion
In this work, we present a hierarchical classifier to clas-

sify atrial fibrillation from a short single lead ECG record-
ing. We incorporate a wide variety of features to perform
classification between four different rhythm categories.
The extracted features are then used in the proposed hier-
archical classifier to perform binary classification at each
hierarchy stage.
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