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Abstract 

Atrial fibrillation (AFib) is the most common 

tachyarrhythmia of the heart in adults and is associated 

with an increased risk for stroke and heart failure.  It can 

be described as irregularly irregular, foci in the atrium 

that set up chaotic atrial circuits and irregular rapid 

contraction of the atrium with loss of consistent atrio-

ventricular synchrony due to decremental conduction at 

the atrio-ventricular node. The challenge was to identify 

predictive features of ECG signals with variable time and 

spatial components. These features were extracted from 

8528 single lead ECG recordings and then input to a 

gradient boosting classifier. The trained model could 

classify AFib with an F1 score of 0.83. Present in the 

dataset were three other rhythm classes; Normal Sinus 

Rhythm, Other, and Noisy. The F1 scores achieved for 

these classes were 0.91, 0.77, and 0.66 respectively. 

 

1. Introduction 

Atrial fibrillation (AFib) is a common arrhythmia 

detected in adult patients with critical illness [1,2].  A 

recent study reported an incidence of AFib of nearly 20% 

in a cohort of adult patients in a medical and surgical 

intensive care unit (ICU), but new-onset atrial fibrillation 

was subclinical or went undocumented in 8% of all ICU 

admissions [2].  AFib may be paroxysmal or intermittent, 

and transient episodes can go unrecognized. It is 

nevertheless an important arrhythmia to detect as it can be 

associated with thromboembolic complications such as 

stroke [3], and is associated with increased hospital 

mortality and longer length of stay [2].   

 

Afib can be a difficult arrhythmia to detect clinically 

particularly if intermittent, and can be further confounded 

by artifacts in the ECG signal.  The pulse of patients in 

AFib is characteristically described as being irregularly 

irregular.  Accurate processing of the continuous ECG 

signal to detect AF from ICU ECG monitoring might 

enable earlier recognition and potentially improve 

outcomes. The PhysioNet challenge provides an 

opportunity to automatically detect AFib through 

processing features of the ECG signal.    

 

2. Dataset Overview 

The Physionet dataset consists of 8528 single lead ECG 

recordings, ranging in duration from 9 s to 61 s, that were 

sampled at 300 Hz. Each waveform has an associated label 

that was determined group of experts. The following four 

labels are present in the dataset; Normal Sinus Rhythm, 

Atrial Fibrillation, Other Rhythm, and Noisy. 

 

3. Pre-processing Workflow 

Before features could be extracted, a series of pre-

processing steps were completed to remove noise and 

standardize the data.  

 

First, the full waveform was filtered using a finite 

impulse response bandpass filter (SciPy [4]) with band 

limits of 3 Hz and 45 Hz. With the signal filtered, the R-

peaks were determined using the Hamilton–Tompkins 

algorithm [5] as implemented in the Biosignal Processing 

in Python (BioSPPy) library. This process returned an 

array of picked R-peak times. 

 

With the R-peaks determined, PQRST templates were 

extracted from the full waveform. A PQRST template 

contains the P-, QRS-, and T-waves and is defined as 

250ms before the R-peak to 400ms after the R-peak. An 

example of extracted templates is presented in Figure 1. 

 

Some waveforms in the dataset have a negative R-peak 

polarity. If the maximum amplitude of the median template 

(R-peak) was negative, then the waveform polarity was 

switched to ensure that the R-peaks were always positive. 

Next, waveforms were normalized to the maximum value 

of the median template (median R-peak amplitude). An 
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example of a normalized waveform is presented in Figure 

1.  

 
Figure 1. Example of R-peak filtering on a normalized 

waveform. 

 

The final step was R-peak filtering to remove any noise 

or ectopic beats that the Hamilton–Tompkins algorithm 

mistakenly selected. This was done by calculating the 

correlation coefficient of a section of each template, 25 

sample points before to 25 sample points after the R-peak, 

with that of the median template. If the correlation 

coefficient was below 0.9, the template and corresponding 

R-peak were rejected. An example of this process is 

presented in Figure 1. This waveform contains a transient 

burst of noise in the first few seconds from which the 

Hamilton–Tompkins algorithm detected some R-peaks. 

Because the shape of the templates associated with those 

R-peaks do not correlate with the median template, they 

were rejected. This is an important step given that R-peak 

to R-peak Interval (RRI) statistics can be quite sensitive to 

noise.   

 

4. Feature Engineering  

Over 300 features were extracted from each waveform 

and used in various arrangements to train the most accurate 

model. In this section, we will provide a general overview 

of the features, which were grouped into three main 

classes; (1) Full Waveform Features, (2) Template 

Features, and (3) RRI Features. 

 

Figure 2. Example of picked templates for Normal Rhythm 

and Atrial Fibrillation. 

 

4.1. Full Waveform Features 

Full waveform features were extracted from the 

complete duration of the signal. Basic amplitude features 

included min, max, mean, median, standard deviation, 

skew and kurtosis. Additionally, the waveform duration 

was also included as a feature.  

 

A more advanced set of full waveform features was 

generated from the stationary wavelet transform 

decomposition of the full waveform [6]. The 

transformation was done using the PyWavelets toolbox 

and the Daubechies 4 (db4) mother wavelet. The 

approximation and detail coefficients of decomposition 

levels 1 – 4 were used. On each set of coefficients, three 

max/mean power spectral density ratios were calculated 

for the following frequency bands: 3 – 10 Hz, 10 – 30 Hz, 

and 30 – 45 Hz. Additionally, the log entropy [6] and 
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Higuchi fractal dimension (PyEEG toolbox) were 

calculated.  

 

4.2. Template Features 

Template features were extracted from all templates that 

passes the filter process. The P-, Q-, R-, S-, and T-wave 

amplitudes and times were all picked for each template. 

Summary statistics, such as the mean, median, and 

standard deviation, were computed for both the amplitude 

and time of each wave. Additionally, the PR, QS, and RT 

interval times and the P-wave energy were computed for 

each template. These features proved useful for 

differentiating between Normal Rhythm and Atrial 

Fibrillation. For the Normal Rhythm example in Figure 2, 

the distribution of P-wave times is tight given that the 

signal contains a clear P-wave. Conversely the lack of a P-

wave in an Atrial Fibrillation rhythm, the distribution of 

pick times is broader. The effectiveness of these features 

decreases as the signal to noise ratio (SNR) decreases. 

 

4.3. RRI Features 

From the filtered R-peaks, the following time series were 

calculated: RR Interval (RRI), RRI Velocity, and RRI 

Acceleration. From these time series, a wide range of heart 

rate variability features were extracted. These included 

standard heart rate variability statistics such as: max, min, 

median, mean, standard deviation, pNN20, and pNN50. 

We also calculated the standard deviations (SD1 and SD2) 

along the major and minor axes of an ellipse fit to the 2D 

scatter point data RRIn and RRIn+1 

Spectral features were calculated from the power 

spectral density of the RRI sequence. Since the RRI 

sequence is not regularly sampled, the sequence was first 

interpolated with a cubic spline sampled at 4 Hz. The 

power spectral density ratios were calculated for three 

frequency bands: 0 – 0.04 Hz, 0.04 – 0.15 Hz, and 0.15 – 

0.4 Hz. 

 

Lastly, a series of nonlinear features for dynamical 

systems, based on one-dimensional time series, were 

calculated for the RRI and RRI Velocity series [pyEEG, 

pyrem, and nolds toolboxes]. These included Sample 

Entropy, Approximate Entropy, Hjorth Parameters 

(Activity, Complexity, and Morbidity), and Higuchi 

Fractal Dimension. 

 

7. Hyper-Parameter Tuning  

For this study, we chose to use Xtreme Gradient Boosting 

(XGBoost) as our learning algorithm given its robust 

regularization function and its demonstrated success at 

winning previous data science competitions. XGBoost 

builds an additive model in a forward stage-wise fashion 

where at each stage, a defined number of regression trees 

are fit on the negative gradient of the loss function [8]. 

XGBoost has the following hyper-parameters that need to 

be tuned: eta, min_child_weight, max_depth, 

max_leaf_nodes, gamma, max_delta_step, subsample, 

colsample_bytree, colsample_bylevel, lambda, alpha, and 

scale_pos_weight. For this study, we employed a grid 

search approach to hyper tuning. The goal of hyper-

parameter tuning is to find a set of hyper-parameter values 

that produced a good trade-off between model bias and 

variance. 

 

 
Figure 3. Testing set confusion matrix. 

 

8. Model Evaluation 

The final cross validation [7] score for the model with 

all hyper-parameters tuned, was 0.82475 with a standard 

deviation of 0.00704. Once the hyper-parameters were all 

tuned, the model was trained on the entire training dataset 

(75 % of the total dataset) and tested on the testing dataset 

(remaining 25 %). The results of the test score are 

presented in Table 1 where we see that the model performs 

best on Normal Rhythm, followed by aFib, Other Rhythm, 

and Noisy in that order. The Physionet F1 score for the 

testing dataset was 0.83675, which is the average F1 of 

Normal, aFib and Other. The test score is slightly higher 

than the cross-validation score (0.82475), which is 

acceptable. 

 

Figure 3 displays the confusion matrix for the test 

results. The confusion matrix shows what proportion of a 

class was given which label. For example, in the testing 

dataset, there were 1263 Normal Rhythm waveforms for 

which 93.82% were correctly labeled as Normal Rhythm, 
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0.4% were incorrectly labeled as Afib, 4.91% were 

incorrectly labeled as Other Rhythm, and 0.87% were 

incorrectly labeled as Noisy.   

 

After running our algorithm on Physionet’s holdout test 

dataset, we achieved a final official score of 0.81. The 

score breakdown for each class (Normal Sinus Rhythm, 

Afib, Other, and Noisy) was as follows: F1_N = 0.90, 

F1_AF = 0.82, F1_O = 0.72, F1_noise = 0.57. 

 

Table 1. Test score summary. 

Label Precision Recall F1 Samples  
Normal 0.88 0.94 0.91 1263  

Afib 0.82 0.84 0.83 184  
Other  0.83 0.72 0.77 614  
Noisy 0.68 0.63 0.66 71  

 

9. Feature Importance 

With tree based machine learning algorithms such as 

XGBoost, the relative feature importance can be extracted. 

ECG waveform features with higher importance were 

more important/influential for making a correct heart 

rhythm prediction compared to those with low importance. 

Of the 20 most importance features, 55% were template 

features, 35% were heart rate variability features and 10% 

were full waveform features. 

 

12. Future Work 

The research presented in this paper demonstrates the 

feasibility of utilizing machine-learning based approaches 

in the automated classification of Atrial Fibrillation, 

Normal Sinus Rhythm, and Noise. Based on this initial 

success, we plan on retraining our model on a dataset 

derived from the Physiological BioBank at the Hospital for 

Sick Children (Sick Kids) in Toronto, CA. This BioBank 

contains over 25 patient-years of continuously collected 

ECG waveform and other physiological data from 42 beds 

of the Pediatric Intensive Care and Cardiac Critical Care 

Units. With an accurate model, our research will culminate 

in the creation of an online continuous classifier that will 

provide rhythm analysis at the bedside.  

 

13. Conclusions 

The 2017 Physionet challenge asked competitors to build 

a classification algorithm to classify a single lead ECG 

waveform as either Normal Rhythm, Atrial Fibrillation, 

Noisy, or an Other Rhythm. We extracted a suite of over 

300 features that fell into one of three main feature groups: 

Full Waveform Features, Template Features, and Heart 

Rate Variability Features. For our model, we chose the 

XGBoost algorithm and conducted an extensive hyper-

parameter grid search study. Our final cross validation F1 

score was 0.82475. After running our algorithm on 

Physionet’s holdout test dataset, we achieved a final 

official score of 0.81. This official score was the third 

highest in the competition and placed us 9th amongst 75 

competitors. Although this did not give us the highest 

score, our model is well generalized to data it had never 

seen before.   
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