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Abstract 

Atrial fibrillation (AF) is a disease affecting 1-2 % of 
the population. Due to its episodic behavior, it is usually 
detected using Holter recordings. While various AF 
detection methods have been described in the past, it still 
remains problematic because holter recordings may 
contain other arrhythmias (OA) and, moreover, they may 
be influenced by patient movements. In accordance with 
the Physionet Challenge 2017, we propose an 
autonomous and robust method of distinguishing between 
pathological and normal recordings. 

First, QRS complexes are identified using envelograms 
(8-25 Hz and 70-90 Hz). Detected QRS complexes are 
clustered into morphology groups using a raw ECG 
signal. If too many morphology groups are produced or 
less than four QRS complexes are detected, the process is 
aborted and the recording is considered too noisy. 

Next, a median shape for the first and the second 
morphological group of QRS complexes is built. Features 
are extracted from averaged shapes, from the rhythm of 
major morphology QRS complexes, from QRS correlation 
to template shapes and from the convolutional neural 
network. 277 features are fed into the neural network, 
resulting in three outputs. The 120 most important 
features, as well as outputs from the neural network, are 
fed into a bagged tree ensemble. 

Machine-learning algorithms and logical rules were 
trained using 8,138 files from a reduced training set. The 
resultant F1 score measured using hidden test set (3,658 
recordings) was 0.81 (normal 0.91, AF 0.80, OA 0.74). 
 
1. Introduction 

The task of the Physionet Challenge 2017[1] was to 
develop a method for automated classification of holter 
ECG recordings. Target classifications were normal (N), 
atrial fibrillation (AF), other arrhythmia (OA) and noisy 
(X). 

A considerable number of methods for automated 
detection of atrial fibrillation have been presented in the 
past. The common weakness of these studies is, however, 
that they were not trained and tested on a public dataset or 
that they were focused on recognition between N and AF 
recordings only[1]. Moreover, these methods usually did 
not work with the noise that is usually present in ECG 

holter recordings as a consequence of body movements or 
body presence in areas with a larger amount of 
electromagnetic noise. 

Here, we present an automated method for ECG holter 
classification which is intended to work with regular ECG 
holter recordings (i.e. containing noise and movement 
artifacts). 
 
2. Method 

The presented method consists of the following blocks 
– signal transformation (mostly to envelograms), QRS 
detection, signal averaging, feature extraction and their 
processing with machine learning (ML) and simple 
logical rules (Fig. 1). The processing is as follows: an 
ECG file (1 lead, 300 Hz sampling, AliveCor device) is 
loaded and transformed into envelograms (Fig. 1B) 
intended for QRS detection (LF: 1-8 Hz, MF: 5-25 Hz, 
HF: 45-65 Hz) and for a convolution neural network (1-5 
Hz, 5-10 Hz, etc. up to 35-40 Hz). Although the presented 
solution uses some features independent of QRS 
detection, most of them require detection of QRS 
complexes. 
 
2.1 QRS detection and morphology groups 

QRS detection (Fig. 1C) uses the idea of peak 
detection in subtracted R = MF - HF envelograms[2] 
which automatically removes part of the noise influence 
in ECG. Maxima in the R signal are detected and further 
tested in a 0.6 s. window (W) centered on the tested 
maxima. The test consists of three steps. First, peak 
amplitude must be at least 1.5x higher than any other 
value in W. Next, three consecutive segments (0.2 s.) of 
window W are defined as Wa, Wb and Wc. The standard 
deviation of R in segment Wb must be higher than the 
sum of standard deviations in segments Wa and Wc. 
Finally, the last test compares LF sums to the left and 
right of the tested maxima in 0.25 s. windows; the right 
LF sum must be higher than the left LF sum – this check 
reflects the expected presence of a T-wave. If the 
maximum passes these three checks it is considered a 
QRS complex. The following QRS complex cannot be 
closer than 175 milliseconds. If the total number of 
detected QRS complexes is lower than 4, the recording is 
considered noisy and the process is aborted (Fig. 1D,G).  
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Figure 1: Flowchart of presented algorithm. The convolution neural network uses multiple envelograms as input. Noisy 
recordings (X) are detected using features from QRS detection and convolution neural network outputs. 
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QRS complexes are clustered into groups by 
morphology. The first QRS complex defines the shape for 
the first group. If any other QRS correlates to this one  
(> 0.9), it is also assigned to the same group. If not, it 
creates a new morphological group (MG). If the number 
of created groups is higher than the length of the file in 
seconds, the file is considered noisy and the process is 
aborted. MGs are merged together if their averaged QRS 
correlates better than 0.95 when tested with time offset. 
Finally, MGs are ordered by the number of associated 
QRS complexes. Thus, typical healthy recordings contain 
only QRS associated to MG1, while recordings with, for 
example, premature ventricular complexes (PVC) will 
contain a large number of sinus beats in MG1 and PVCs 
in MG2. QRS complexes associated with low-occurrence 
MGs usually belong to artifacts. 
 
2.2 Feature extraction 

Features were extracted from several sources. The first 
source was statistical description of RR intervals 
(prepared for MG1 and MG2 and also independent of MG) 
as RR standard deviation, often used for detection of 
atrial fibrillation (features extracted: n=68). Another 
source was statistical description of RR in a moving 
window (6 beats), also containing single RR crossings 
through average RR or description of RR distribution 
(n=37). Because detection of RR irregularities is essential 
for detection of other arrhythmias, irregularities in RR 
(Fig. 2-right) were tested as well as the ratio of MF and 
LF sums close to QRS. 

Features extracted from RR intervals were used to 
identify noisy recordings – if RR intervals from MG1-3 
cover less than 40 % of the ECG signal, the signal was 
considered noisy. 

Figure 2: Examples of extracted features. Left – min. 
probability of being N from convolution neural network 
in 6-sec. moving window (noisy recordings were not 
predicted by CNN). Right – ratio of irreg. beats in RR 
intervals. N – normal, AF – atrial fib., OA – other 
arrhythmia, X – noisy. The Kruskal-Wallis test shows 
p<0.01. 

A significant source of features were averaged beats 
(Fig. 1E); averaging was performed using raw ECG and 
LF and MF signals. Only MG1 beats (sinus beats) were 
used for signal averaging. Features describing amplitude 
and standard deviation in specific segments and their 
ratios were extracted. For example, standard deviation in 
a segment <-200;-80> ms prior to QRS should be very 
low in recordings containing atrial fibrillation because the 
P-wave is not synchronized with QRS. Therefore, this 
segment in an averaged shape should be flat, while 
averaging of a healthy recording will reveal a P-wave 
even in a noisy signal. 60 features were extracted from 
averaged QRS, pointing to QRS, P-wave, T-wave and ST 
elevation. 

Independent of QRS detection, a convolution neural 
network (CNN) was also used for feature extraction (Fig. 
1F). The input for CNN was a floating 6-second window 
across band-passed (1-40 Hz) ECG and its envelograms 
(1-40 Hz by 5 Hz). The CNN contains 2 convolution 
layers, uses a ReLU non-linearity function [3] and 
contains 15 neurons in the first fully connected layer. The 
output layer contains 3 neurons and after normalization 
(softmaxLayer) the CNN produces the probability of 
states N, AF and OA (Fig. 2-left). Because we receive 
probabilities for each window, statistical descriptions of 
these probabilities (min, max, mean and standard 
deviation and their derivates) were used as features 
(n=17). 

Features were also extracted from correlation 
coefficients of average QRS (MG1 and MG2) to 30 shapes 
present in the training set (n=62), including other features 
related to correlation. 

Existing features were used to isolate N recordings 
(Fig. 1H) using simple logical rules: BPM (derived from 
MG1) must be between 50 and 99 BPM, max probability 
of OA derived from CNN must be lower than 0.35. This 
rule is capable of isolating 3,136 N recordings (63 % of 
all N) from the training set without following machine-
learning techniques. 
 
2.3 Processing with a neural network and 
bagged tree ensemble (BT) 

All features (n=277) were fed into a neural network 
(Fig. 1I) with one input layer, one hidden layer (25 
neurons) and one output layer (3 neurons). The output 
values of the NN (i.e. N, AF and OA probabilities) are 
added to the feature set and fed into a badged tree (Fig. 
1K). Finally, the output of the bagged tree is interpreted 
as an N, AF or OA state. 
 
2.4. Training 

The original training set contained 8,350 ECG 
recordings. We removed 167 of these recordings in cases 
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where we did not agree with the original classification. 
The modified training set (8,183 recordings) was then 
used to train the CNN and to extract features. Logical 
rules (Fig. 1G) identified 196 recordings as noisy (based 
on QRS and CNN features) and these records were not 
used for the training of the NN and BT. Finally, 277 
features from 7,987 files were used to train the NN; their 
subset (120 features) was used to train the BT. 
 
3. Results 

The presented solution was tested on a hidden testing 
set containing 3,658 recordings. Training and testing 
scores are shown in Table 1. 
 
Table 1. Results of the presented solution. BT – bagged 
tree. 

 
 BT cross-validation 

(N=7,987) 
Training set 
(N=8,183) 

Testing set 
(N=3,658) 

Normal 0.9529 0.96 0.91 
Atrial fib. 0.8690 0.96 0.80 
Other arr. 0.8575 0.92 0.74 
Noisy  - 0.66 0.54 
Total F1  89.32 0.95 0.81 

 
4. Discussion 

 We experimented with different scenarios of feature 
collection and their processing with machine learning. 
The most straightforward variant of feature processing 
using simple logical rules was our primary approach, but 
it proved to be applicable only in specific cases (i.e. 
anything with BPM≥100 cannot be an N recording). No 
single extracted feature alone could be used for clustering 
into target groups with good accuracy. On the other hand, 
simple logical rules were used for detection of noisy 
recordings, because their count was too small for 
effective machine learning. Distinguishing the OA 
category – which may contain any other arrhythmia – 
from the AF category presented an extremely challenging 
task, especially because we were working with real holter 
ECG recordings. This led us to experiment with different 
kinds of machine-learning approaches (Table 2). 

Solutions using an NN or BT or their combination as 
the last processing step were comparable (0.83 to 0.85) 
when they used the same feature set. The power of the 
solution using only CNN features (n=12) connected to an 
NN was, however, really surprising. This solution 
produced a test score of 0.80 which seems – considering 
the number of features used – to be an extremely 
powerful solution for recognizing N, OA and AF 
recordings. However, the best results were achieved with 
a combination of CNN features and all other features 
processed with an NN followed by a BT. 

Table 2. Comparison of scores produced by different 
kinds of machine-learning methods and their 
combinations. ML – machine learning, NN – neural 
network, BT – bagged tree, CNN – convolutional neural 
network. Please note the score of 0.80 produced by CNN 
and NN alone without detection of QRS complexes. The 
training score with BT solutions is presented as cross-
validation (after the slash). *Scores obtained after the end 
of the challenge with updated labels. 
 

Used ML 
method 

Feature based on  Result score for 
QRS CNN training testing 

NN - Yes 0.89 0.80 
NN Yes - 0.85 0.82 
NN Yes Yes 0.89 0.84 
BT Yes Yes 0.89 0.83 
NN+BT Yes Yes 0.93* 0.81* 
 

5. Conclusion 

We presented a method for automated classification of 
holter ECG recordings into four groups: normal 
recordings, recordings with atrial fibrillation, recordings 
with any other arrhythmia, and noisy recordings. Our 
results demonstrated the necessity of using features based 
on QRS detection, but also showed the strength of 
features based on convolution neural networks. 
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