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Abstract

Bubble Entropy is a new metric aiming at the quantifi-
cation of the entropy of a series, the most important prop-
erty of which is the total elimination of the scale parameter
(e.g., r when computing Sample Entropy) and the low de-
pendency on the length of the runs compared (e.g., the m
parameter).

In this paper, we compare the tolerance of Bubble En-
tropy to spikes and compare it to that of Sample Entropy.
We use RR series publicly available on Physionet and com-
pute Sample and Bubble Entropy before and after artifi-
cially added spikes. We add N spikes of value a · std,
where a is a parameter and std the standard deviation of
the signal. We compute then the relative error (absolute
error / known value).

According to our experiments, Bubble Entropy exhibits
a remarkable tolerance to spikes. In all our experiments,
Bubble Entropy presents a low relative error. Compared
to Sample Entropy, the error reported by Bubble Entropy
is always smaller and sometimes remarkably (p � 0.001,
Wilcoxon rank-sum test). The mean relative error for Sam-
ple Entropy ranges from 0.084 to 0.435, while the mean
relative error for Bubble Entropy from 0.069 to 0.122.
Sample over Bubble Entropy relative errors ratios reach
up to 3.57.

1. Introduction

The value of using non linear methods in the quantifica-
tion of properties of Heart Rate Variability (HRV) has been
proved in the last decades by their extensive use, both in
clinical practice and research. An analytical report on the
use of these methods can be found in [1]. Among the oth-
ers, techniques meant to assess the entropy of the HRV se-
ries had a relevant spot, with Approximate (ApEn) [2] and
Sample Entropy (SampEn)[3][4] being those which were
mostly used and cited. The research community seems,
day by day, to trust Sample Entropy more than Approxi-
mate Entropy, even though the advantages of the latter is
not wise to be ignored.

The number of papers using and citing Sample Entropy
is huge. In an attempt to show its validity and wide ac-
ceptance, we refer here to a few which belong in diverse
scientific fields and not in the intersection of computing
and cardiology or, even generally, in biomedical engineer-
ing. Sample Entropy has been used, amongst others, in
earthquake data analysis [5], in stock market manipulation
studies [6], in mechanical engineering [7] and as a mea-
surement for climate complexity [8].

A remarkable disadvantage of entropy based metrics is
their dependence on parameters which should be selected
manually and empirically by the user. In particular, both
ApEn and SampEn depend on the number m of consec-
utive points of the series considered (subseries) and on a
scale parameter r (the tolerance employed in the compar-
isons of subseries). Even though typical values for both
Approximate and Sample Entropy are usually used and
seem to be widely accepted, the dependence of entropy
based metrics on parameters is still there and can not be
ignored.

Recently Bubble Entropy has been proposed [9] as an
attempt to introduce an entropy based metric “without pa-
rameters”, or with minimum dependence on them. While
still depending on parameters, Bubble Entropy has suc-
cessfully eliminated the necessity of the parameter r and
has limited the importance of the parameter m. Until now,
Bubble Entropy has been successfully tested in the dis-
crimination of recordings acquired from healthy and from
congestive heart failure patients [9] and for identifying
electrocardiotocograms of fetuses with normal and abnor-
mal pH values at birth [10].

Currently, we are working on identifying the advantages
and disadvantages of the method and the characteristic of
the recordings on which it is beneficial to be applied. In
this paper we test the tolerance of the method to the ex-
istence of spikes in heart rate variability series. In order
to have a meaningful and comparative view with another
method, we selected, not surprisingly, to compare it with
Sample Entropy.

In the rest of the paper, we first present Bubble Entropy,
in a detail sufficient for the reader to understand the ba-
sic idea, the validity and the definition. Focus is given to
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the limited dependence of Bubble Entropy on the param-
eters. Next, we present our experimental results, show-
ing that Bubble Entropy is significantly tolerant to spikes,
more tolerant than Sample Entropy. The last section states
the main conclusions of this work.

2. Bubble Entropy

In this section, we first give some background informa-
tion in order to show how Bubble Entropy was evolved
from existing common entropy based methods. Next we
describe the method itself.

A reasonable starting point for the elimination of the pa-
rameter r is symbolic analysis [11]. In symbolic analysis,
the range of possible values of a time series is split into a
number of equal sized intervals. Each interval is given a
symbolic name, e.g. A, B, C, etc. Each point of the time
series belongs in one of those intervals and is named af-
ter this interval. Entropy can be computed based on these
symbolic names. This can be done in one dimensional or
in an m dimensional space.

Figure 1. Symbolic analysis: example of a symbolic series
and of symbolic words of length m = 4

In figure 1 we can see an example. The three lines sepa-
rate the space into four subspaces. Each subspace is named
as A,B,C or D. The first point belongs in subspace B,
the second in C, the third in C, so the symbolic sequence
BCCACBDC is formed. If we embed the series into an
m = 4 dimensional space, we can define symbolic words.
The first four symbols form the word BCCA, symbols in
positions 2 to 5 form the word CCAC and so on.

In the computation of entropy described above there is
no r parameter, since there is no reason to define the dis-
tance between two vectors. We have two relations between
symbolic names: identical and different.

However, in this way the r parameter has not been really
eliminated. Actually, it has been hided or, even better, it
has been replaced by another parameter: the size of the
intervals or (equivalently) the number of the intervals.

In order to describe the space with symbols without di-
viding it into predefined or user defined subspaces, we first
embed the time series in an m dimensional space. Then

for each vector (point in the m dimensional space), we de-
fine the subspaces, not based on thresholds with predefined
positions (lines as in figure 1), but using the ranks of the
elements (“lines” defined by the values of the elements in
each vector, please see figure 2).

Figure 2. Ranks form a symbolic series of length m = 5

Next, we give symbolic names to each element of the
vector depending on which subspace it belongs. In this
way, each vector is transformed to a symbolic word of
length m. Instead of using letters as symbols, we select
to use numbers as symbols as shown in figure 2.

One can notice here two things: a) in each symbolic
word, only the symbols 1 . . .m appear and each symbol
appears in a word only once; b) the produced symbols ex-
press the order (rank) of each element, i.e. the position it
will have if we sort the vector.

Since a sorting procedure is involved and since the effort
invested in the sorting procedure expresses, in a way, some
kind of complexity, we select to base our further computa-
tion on this complexity. The most appropriate algorithm to
give us a clear measure of the sorting effort is Bubble Sort.
We employ Bubble Sort and name the method after it.

When computing Bubble Entropy, for each vector of the
m dimensional space we count the number of swaps re-
quired by Bubble Sort to sort this vector. By doing so, we
achieve to transform the given time series into a series of
numbers of sorting steps, a series expressing complexity.
We compute the entropy on this series.

Similarly to Sample Entropy:
• Bubble entropy is defined as a conditional entropy,
i.e. what is reported is the increase of entropy when
moving from an m-dimensional space to the m+1 di-
mensional space
• We use the Rényi definition of entropy of order 2:

ERényi =

log
m∑

j=1

pαj

(1− α) logm
. (1)

Intuitively, a second order entropy metric give emphasis
on sharp changes, something important in heart rate vari-
ability signals, at least more emphasis than a linear defini-
tion, like the one proposed by Shannon. A third order en-
tropy or an entropy of higher order would emphasize sharp
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Table 1. Sample
/

Bubble Entropy Relative Error
Parameters Sample Bubble Sample

/
Bubble p-value

α=10, N=1 0.118 0.076 1.55 � 0.001

α=10, N=2 0.161 0.102 1.58 � 0.001

α=10, N=3 0.178 0.120 1.48 � 0.001

α=20, N=1 0.084 0.069 1.21 � 0.001

α=20, N=2 0.134 0.115 1.17 � 0.001

α=20, N=3 0.178 0.101 1.76 � 0.001

α=30, N=1 0.139 0.070 1.99 � 0.001

α=30, N=2 0.285 0.099 2.88 � 0.001

α=30, N=3 0.435 0.122 3.57 � 0.001

changes even more, something that it is not necessarily de-
sirable.

Pseudo-code for the computation of Bubble Entropy fol-
lows:

- step 1: Compute Entropy in m dimensional space:
- step 1.1: embed the signal into m dimensional space

- step 1.1.1: for each vector compute the number
of swaps required by Bubble Sort to sort it

- step 1.2: construct a series with the computed num-
ber of swaps
- step 1.3: use Rényi definition of entropy to compute
the amount of entropy in m-dimensional space

- step 2: Compute Entropy in m+1 dimensional space fol-
lowing the procedure described in step 1
- step 3: Report the difference of Entropy computed in
steps 1 and 2

3. Tolerance to Spikes

For our experiments we used the RR series contained
in the Fantasia dataset [12]. This is a publicly available
dataset which can be freely downloaded from Physionet
[13]. It consists of 40 recordings, 20 of which have been
acquired from young subjects of age between 21 and 34
years old, and 20 from elderly subject all between 68 and
85 years. All subjects were healthy. All subjects remained
in a resting position and in sinus rhythm during recording.
They were watching the movie Fantasia (Disney, 1940)
to help maintain monitoring conditions consistent among
subjects.

From each RR signal of the Fantasia dataset we ran-
domly selected 300 consecutive RR intervals and com-
puted Sample and Bubble Entropy on them. Then, we ran-
domly added N spikes of value a · std, where std is the
standard deviation of the signal. We computed again Sam-
ple and Bubble Entropy and estimated the relative error
(absolute error / known value). We repeated the experi-
ment 100 times and reported the mean relative error (i.e.,
average of 4000 signals).

Results are shown in table 1 for a = 10, 20, 30 and for
N = 1, 2, 3. Commonly employed parameters have been
selected for Sample Entropy (m=2, r=0.2) and m=10
for Bubble Entropy. As we discussed in [9], the value of
m is not critical when computing Bubble Entropy, as long
as m is reasonably large.

In the table, the value before the slash is the relative er-
ror of Sample Entropy and the value after the slash is the
corresponding error of Bubble Entropy. In all cases Bub-
ble Entropy presents a low relative error, sometimes much
lower than that of Sample Entropy (p � 0.001, Wilcoxon
rank-sum test). The mean relative error for Sample En-
tropy ranges from 0.084 to 0.435, while the mean relative
error for Bubble Entropy from 0.069 to 0.122. Sample over
Bubble Entropy relative errors ratios reach up to 3.57 for
the values of α and N we tested.

To explain this outcome, we must notice that the effect
of a spike in the computation of Bubble Entropy does not
modify significantly the number of the expected swaps.
The maximum number of swaps is the swaps necessary
to sort a vector whose elements are in descending order:

nmax =
m(m−1)

2
. (2)

The expected number of swaps when sorting a vector of
size m is:

nexp = 1/2
m(m−1)

2
=
m(m−1)

4
. (3)

If we devide bym, we get the expected swaps per element:

nelem =
m(m−1)/4

m
=

(m−1)

4
. (4)

This is the upper bound of the number of swaps which a
spike is expected to add or remove to the total number of
swaps necessary to sort the vector. This amount is not sig-
nificant compared to the expected number of swaps, and
it will be uniformely distributed, something that will not
influence significantly the final computed value of Bubble
Entropy.

On the other hand, when we use Sample Entropy:
• spikes influence the value of r. Please recall that r
depends on the standard deviation of the signal. Stan-
dard deviation is highly affected by spikes. The value
of r participates in every check for similarity;
• all checks for similarity which include spikes are ex-
pected to fail.

4. Conclusions

In this paper we study the tolerance of Bubble Entropy
to spikes in heart rate variability signals. Bubble Entropy
embeds the signal into an m dimensional space and then
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sorts each vector of the m dimensional space using the
Bubble Sort algorithm. The number of necessary swaps
produces a new series for which the Rényi Entropy is com-
puted. The same procedure is followed in them+1 dimen-
sional space. The difference of the entropy in these two
spaces is reported as Bubble Entropy.

We used publicly available signals and we artificially
added spikes in them. Then we compared the relative er-
ror produced in the values of Bubble Entropy and Sample
Entropy, due to these spikes. Our experiments showed that
Bubble Entropy was proved more tolerant to the existence
of spikes.

The application of Bubble Entropy [9, 10] has shown
that it is a promising method which can successfully ex-
tract valuable information from HRV signals. The method
should be further tested in practice as a prognostic and di-
agnostic index using available datasets and clinical scenar-
ios.
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