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Abstract

In software applications to analyse Heart Rate Varia-
bility (HRV) or to detect heart rhythm disorders, automatic
heartbeat classification is a first step to expose abnormal-
ities in the electrical activity of the heart.

We propose a new morphological description of heart-
beats based on Variational Mode Decomposition (VMD)
to classify them as normal, supraventricular or ventri-
cular. The proposed approach combines the features ex-
tracted from the different modes with time features, and it
is designed for single-lead applications. The features are
fed to an LS-SVM classifier, using an RBF kernel, 10-fold
cross-validation and 50% of balanced data as training.
In this study, two different approaches were tested: one
considering an intra-patient approach inspired by a semi-
supervised application, in which the same patients form
the training and the test set; and a second inter-patient ap-
proach, in which the training and the testing signals belong
to different patients.

The method reports an average accuracy of 92.17% and
sensitivities of 92.84%, 72.56% and 91.25% for normal,
supraventricular and ventricular beats respectively, which
is in line with the state of the art.

1. Introduction

Heartbeat classification is a required step for several
applications used for long-term electrocardiogram (ECG)
analysis. For instance, the analysis of heart rate variabil-
ity (HRV) should in principle use only the time intervals
between normal beats. Another example is the automatic
detection of arrhythmia, which can assist the diagnosis of
heart diseases.

The classification of heartbeats is highly time consum-
ing and tedious if done manually, and therefore, there is
a big interest in automatic algorithms. The features used
for this automatisation are very relevant, since they di-
rectly affect the results of the classifier. Previously de-

scribed features are based on timing [1, 2]; ECG mor-
phology [3], wavelets [4], Principal Component Analysis
(PCA) [5] or Independent Component Analysis (ICA) [6].
These features can be extracted either from single or multi-
lead ECG.

This study focuses on feature extraction, aiming to find
characteristics applicable to wearable devices, where a
single-lead approach is used and the signals can generally
be affected by noise. Here, the use of Variational Mode
Decomposition (VMD) is proposed as a way to improve
the information contained in single-lead ECG, while being
a robust solution against noise.

2. Methodology

2.1. Data

In this study, the first lead of the MIT-BIH Arrhythmia
dataset recordings was used for analysis [7]. The dataset
consists of 48 recordings of approximately 30 minutes,
sampled at 360 Hz and from which the R peak locations
and the labels of the heartbeats are provided. AAMI rec-
ommendations suggest classifying heartbeats in 5 groups:
Normal, Supraventricular ectopic beat, Ventricular ectopic
beat, Fusion beat and Unknown beat. We considered only
the first three classes. Table 1 lists the types of annotations
from the MIT-BIH Arrhythmia dataset that are included in
each of the three classes.

Following the recommendations in [7], four pacemaker
patients were removed from the experiment. The 44 re-
maining registrations were divided in two sets of signals,
DS1 and DS2, as specified in [1], to be able to compare the
present results with the literature. Two approaches were
considered regarding the data used for training and testing
in the experiments performed, as suggested in [8]. On one
hand, an intra-patient approach, as an indicator for a semi-
supervised version of the algorithm in which the same pa-
tients are used for training and testing. On the other hand,
an inter-patient test, in which a set of patients is used for
training and another set is used for testing.
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Given the fact that the three classes are very different
in size in the present database, the training set needs to
be balanced for the experiments performed. For the intra-
patient approach, 472 heartbeats of each class are used for
training, corresponding to half the size of the supraventric-
ular class, which is the smallest one. The remaining heart-
beats of the DS1 set are used for evaluating the algorithm.
For the inter-patient approach, the training set consists of
944 heartbeats of each class from DS1, and the method is
evaluated on the DS2 set. K-medoids is used in both ap-
proaches to select the training heartbeats of the ventricular
and normal classes, in order to guarantee a good represen-
tation of the dataset.

2.2. Preprocessing and Segmentation

ECG signals are affected by several kinds of artefacts
and noise, such as power-line interference, muscle arte-
facts, electrode movement or baseline wander. The method
proposed in [1] for preprocessing is used in this approach,
in which the baseline wander is removed with two consec-
utive median filters of 200 ms to extract the QRS complex
and the P wave, and 600 ms for the T waves. The resulting
signal is removed from the original one, and the outcome
is fed into a 8-order FIR low-pass filter with a 40Hz cut-off
frequency.

Regarding segmentation, this method requires a previ-
ous stage of R peak detection, since for the given experi-
ments the annotated R peaks were used. Once the R peaks
are located, an asymmetric window of 650 ms is applied to
segment the heartbeats, as used in [9].

2.3. Feature Extraction

2.3.1. VMD features

Variational Mode Decomposition (VMD) is a method
to adaptively decompose a signal into its principal modes.
Those modes are selected considering that (1) they must
be able to reconstruct the signal in an optimal way and (2)
they are band-limited around an automatically estimated
center frequency [10].
These characteristics make the method very appropriate
for the present application, due to the quasi-stationary
properties of the ECG, the robustness of the method
against noise and the decomposition in a number of k
modes that improves the information of single-lead ECG.
Furthermore, the center frequencies associated to each of
the k modes can be related to the different characteristic
waves of the ECG: the P, QRS and T wave.
Being a parameterized method, VMD requires two param-
eters to be fixed in advance: the number of modes k and
the bandwidth control parameter α. For ECG, the opti-
mization technique developed by Guo et al. [11] leads to a

Table 1. Types of beats from the MIT-BIH Arrhythmia
dataset included in classes Normal, SVEB and VEB.

Type of heartbeat Symbol

Normal
Normal Beat N

Left Bundle Branch Block (LBBB) L
Right Bundle Branch Block (RBBB) R

SVEB

Atrial Premature Beat (APB) A
Aberrated APB a

Nodal/Junctional Prem. Beat J
Prem./Ectopic Supraventr. Beat S

Atrial Escape Beat e
Junctional Escape Beat j

VEB
Ventricular Premature Beat V

Ventricular Escape Beat E
Fusion Ventricular and Normal F

number of modes k of 5 and α of 30.
Once the five modes are extracted for each of the heart-
beats, they are sorted according to their central frequency.
The five frequency bands selected are (1) from 0.5 to 3 Hz,
(2) from 3 to 6 Hz, (3) from 6 to 9 Hz, (4) from 9 to 13 Hz
and (5) from 13 to 25 Hz. The first four bands are based on
the literature, since they correspond approximately to the
heart rate (1 Hz), T wave (4 Hz), P wave (7 Hz) and QRS
complex (10 Hz) [12]. Moreover, the last frequency band
also presents information in the frequency spectrum of the
ECG which can be used for classification.
The extraction and sorting of the modes result in a set of
five modes per heartbeat as shown in Figure 1. As it can
be observed, the three beat classes show differences in the
morphology of the modes. Based on these differences, five
features are extracted from each of the modes, and they are
listed in Table 2.
As shown in the figure, the number of zero crossings and
the amplitude difference between the deepest minima seem
to differ among the three classes, while the symmetry
around the R peak is specially considered to differ between
Supraventricular and Ventricular heartbeats. In addition,
the bandwidth at 3dB and the total power in each band are
extracted, leading to 25 morphological features extracted
from all the modes.

2.3.2. Temporal Features

Since one of the most relevant aspects of an irregular
beat is its timing, the four standard temporal features listed
in Table 2 are also considered. These temporal features are
normalized per patient, as recommended in [2].

2.4. Classifier

The 29 features, consisting of 25 VMD related features
and 4 related to timing, are fed to an LS-SVM classi-
fier using an RBF kernel[13]. Additionally, 10-fold cross-
validation is used to tune the parameters of the kernel.
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Figure 1. Example of Normal, Supraventricular and Ventricular beat: ECG and the 5 modes obtained.

Table 2. VMD and time features considered in the study.
VMD Features Time Features

Number of zero crossings Distance to previous R peak
Symmetry around the R-peak Distance to next R peak

Amplitude difference between deepest minima Absolute difference between previous and post RR interval
Bandwidth at 3 dB Deviation of the RR distance to the last 10 intervals

Total Power in the bandwidth

3. Results and discussion

3.1. Intra-patient results

In this experiment, representative of a semi-supervised
approach, the group of 22 records DS1 was used both for
training and testing. Results are shown in Table 3, for the
case of using time features, VMD or both. The best overall
accuracy is 95.74%, which was obtained with the combi-
nation of both types of features. Moreover, the use of time
features allows to distinguish between normal and irregular
heartbeats, while VMD features, which are more related to
morphology, but ignore the presence of arrhythmia, assist
in the distinction between supraventricular and ventricular
heartbeats. The use of both kinds of features resulted in
sensitivities above 90% for each of the classes. However,
the specificity of supraventricular heartbeats still needs to
be improved.

3.2. Inter-patient results

This experiment relates to the general problem in which
the algorithm is trained with a set of patients and tested
on different ones. Table 4 shows the results obtained for
this approach. When using only VMD features, the sensi-
tivity of ventricular heartbeats increased to 81.11%, while
when using temporal features, only 76.35% was obtained.
In addition, the combination of both types of features led
to an improvement in the results of every class. For normal
heartbeats, the False Alarm Ratio was 3.75%, with a speci-

ficity of 99.59%, and a sensitivity of 92.84%. Ventricular
heartbeats obtained a sensitivity of 91.25% and specificity
of 80.84%. For the supraventricular beats, the most chal-
lenging class, a sensitivity of 72.56% was obtained with
the combination of VMD and temporal features, which
was much higher than that obtained exclusively with one
type of feature. In spite of this, the specificity for this class
is still poor and requires more research to be improved.

4. Conclusion

This study proposed the use of Variational Mode De-
composition (VMD) as a new source of features for heart-
beat classification. Three of the classes suggested by
AAMI were considered: normal, ventricular and supraven-
tricular. The new features, combined with traditional tem-
poral features, were shown to obtain good results for the
distinction of these three classes using single-lead ECG.
While temporal features assist IN the detection of irregu-
lar heartbeats, VMD allows the differentiation of the type
of irregularity. Despite the promising results, the method
needs to be optimized to properly exploit the properties of
the different modes.
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