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Abstract

Background and Aim: Monitoring physiological sig-
nals during sleep can have substantial impact on detecting
temporary intrusion of wakefulness, referred to as sleep
arousals. To overcome the problems associated with the
cubersome visual inspection of these events by experts,
sleep arousal recognition algorithms have been proposed.

Method: As part of the Physionet/Computing in Car-
diology Challenge 2018, this study proposes a deep en-
semble neural network architecture for automatic arousal
recognition from multi-modal sensor signals. Separate
branches of the neural network extract features from
electro-encephalography, electrooculography, electromyo-
gram, breathing patterns and oxygen saturation level; and
a final fully-connected neural network combines features
computed from the signal sources to estimate the proba-
bility of arousal in each region of interest. We investigate
the use of shared-parameter Siamese architectures for ef-
fective feature calibration. Namely, at each forward and
backward pass through the network we concatenate to the
input a user-specific template signal that is processed by
an identical copy of the network.

Result: The proposed architecture obtains an AUPR
score of 0.40 on the test set of the official phase of Phy-
sionet/CinC Challenge 2018. A score of 0.45 is obtained
by means of 10-fold cross-validation on the training set.

1. Introduction

Sleep affects health, mood and wellness, and study-
ing it is important both from the theoretical and clinical
point of view. The quality of sleep in patients with sleep
disorders is degraded by frequent occurrences of sleep
arousals, that is, temporary interruptions of wakefulness
into sleep or spontaneous increase of the vigilance level
[1]. Arousal stimulus may be associated with the patho-
physiology of several sleep disorders (e.g. Apnea, snor-
ing, periodic leg movement, and rapid increase of elec-
tromyogram), or may be unrelated to the pathological fac-

tors (i.e. spontaneous arousal). Polysomnography (PSG) is
widely used in sleep laboratories to assess the structure and
physiological changes of sleep, which makes it possible
for sleep experts to monitor electroencephalogram (EEG),
electromyogram (EMG), electrooculogram (EOG), elec-
trocardiogram (ECG), breathing patterns, and other signals
associated with chest, body and leg movements [2]. Gen-
erally, the scoring of arousal is done manually by sleep ex-
perts by inspecting several epochs of PSG recordings. This
is, of course, a time-consuming and cumbersome task for
medical technologists. Further, the outcome of the sleep
scoring is crucially affected by the knowledge and experi-
ence of the human performing the scoring. As such, de-
velopment of an automated arousal detection system from
PSG, in the form of an efficient, fast and reliable algorithm,
may provide a powerful aid to clinical practitioners.

In this study, we aim to use the current gold-standard di-
agnostic methods from manually annotated sleep arousals
in PSG recordings to develop an automated sleep arousal
detection system from a large amount of data provided
by the Physionet/CinC Challenge 2018 [3]. We design
a deep neural network (NN) architecture for multi-modal
sleep arousal detection from EEG, EOG, EMG, Airflow
and SaO2 signals. Namely, after pre-processing and data
augmentation routines are applied, an ensemble of Convo-
lutional Neural Networks (CNNs) automatically extracts
relevant features separately from each input sensor chan-
nel. The feature vectors are then concatenated together
and a sequence of fully-connected layers is used to esti-
mate sleep arousal. Importantly, the architecture relies on
the concept of shared-parameter Siamese networks to per-
form automatic feature calibration on-the-fly. Results on
the challenge test set provided an Area Under the Precison-
Recall curve (AUPR) score of 0.40 for the model discussed
in this paper.

Related Works. Several automatic and semi-automatic
detection algorithms have been proposed using different
kinds of PSG signals as the input [4–8].

An automated method to discriminate arousal segments
was presented by De Carli et al. [4]; the method relied
on a combined EEG and EMG analysis. Again, EEG and
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EMG, pulse and SaO2 signals were used in a framework
based on data mining, which employed a meta-rule ex-
traction to obtain arousal episodes [6]. Olsen et al. [5]
proposed an autonomic arousal detection method based on
feature learning using heart rate variability (HRV) analysis
tools. The ECG signal was also used for obstructive sleep
Apnea screening employing K-nearest neighbourhood and
artificial neural networks as supervised classification al-
gorithms in [7]. In another study [8], a diagnostic sleep
Apnea system based on linear discriminant analysis used
a combination of features based on heart rate variability
analysis and SaO2.

2. Materials and Methods

In this section we briefly review the characteristics of
the dataset provided by the challenge organisers, as well
as the methods employed in our challenge submissions.

2.1. Dataset

The dataset provided for the Physionet/CinC challenge
2018 is split into a training and a test set. The training
set is composed of 994 PSG recordings (including 6 EEG
channels, EOG, 3 EMG channels, respiratory signal, SaO2
and ECG), while 989 recordings comprise the test set. The
data was gathered from 1985 subjects who underwent an
overnight recording sessions in the Massachusetts General
Hospital (MGH).

2.2. Arousal annotations

Arousal annotations were provided only for all the sam-
ples included in the training set. According to the Amer-
ican Sleep Disorders Association (ASDA), alternations in
EEG and EMG activities are the most significant indica-
tors for arousal detection [9]. Furthermore, the Ameri-
can Academy of Sleep Medicine (AASM) defines the elec-
troencephalographic arousal as an abrupt shift in electroen-
cephalogram frequency, including alpha, theta, and/or fre-
quencies greater than 16 Hz, lasting at least 3 seconds and
with at least 10 seconds of previous stable sleep [2]. An-
other marker of arousal is related to episodes of arterial
oxygen desaturation during room air breathing [8]. We
plot in Figure 1 an example of 30 seconds of PSG record-
ing with sleep arousal annotation provided in the training
set.

2.3. Network Architecture

In this section we describe the NN model employed for
the challenge, as well as signal pre-processing and input
preparation.

Pre-processing. We investigate the use of a pre-processing
step only for EEG channels, while the other signals are fed
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Figure 1. Example of a Polysomnography (PSG) record-
ing during 30 seconds of sleep. The first 6 channels indi-
cate EEG recordings, [F3-M2,F4-M1,C3-M2,C4-M1,O1-
M2,O2-M1], and the 7th channel is electrooculography
(EOG) signal named E1-M2 according to 10-20 standard
system of EEG Placement. The rest represent electromyo-
graphy (EMG), abdomen respiration, chest respiration, air-
flow, oxygen saturation (SaO2) and the electrocardiogra-
phy (ECG), respectively. The black line at 15 second rep-
resents the onset of arousal according to the annotation
provided by the PhysioNet/CinC Challenge 2018.

into the NN directly in the form provided in the dataset.
Regarding EEG pre-processing, first we employ a 6th or-
der band pass filter in the [0.5 − 45] Hz frequency range.
Afterwards, we apply an automatic algorithm to remove
candidate movement artefacts. Briefly, we compute am-
plitude distributions for non-overlapping 8 second time-
windows of signal. We then recognise movement artifacts
as those epochs above the 95th percentile of the amplitude
distribution, and accordingly we discard them [10].
Windowing. We segment each signal into 30 second time
windows with 50% overlap, further sub-sampling all the
signals to 50 Hz and standardising them to zero mean
and unit standard deviation. At each prediction step the
NN processes a full time window at once giving a unique
arousal score for the whole window. The results for adja-
cent overlapping slices of windows are then averaged to-
gether.
Data Augmentation. We heavily rely upon data augmen-
tation both at training and testing time. We do this by
randomly cropping each time window to a fixed size of
1400 consecutive time samples (i.e. 28 seconds at 50 Hz).
This has the effect of reducing the dimensionality of the
NN input space (hence reducing the number of weights
that need to be learnt), as well as increasing the effective
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L. 1 L. 2 L. 3 L. 4 L. 5 L. 6
Conv. Filters 8 8 8 16 32 32
Conv. Kernel 16 16 16 32 32 64
Max-pooling 7 3 7 3 7 3

Table 1. CNN for feature embedding of EEG, EOG, EMG
and airflow signals. 33% dropout is used between layers.
A CNN is trained for each of the input signals, and the
outputs are concatenated together.

size of the training set available. At training time data
augmentation is done on-the-fly, making sure that every
batch of data has as many aroused samples as non-aroused
ones. This has the effect of re-balancing the dataset and
forces the NN to give the same a-priori importance to both
classes. Otherwise, since the non-arousal class is greatly
over-represented in the dataset, the NN would give it pref-
erence, thus negatively affecting the AUPR score.

At test time, 10 rounds of data augmentation are applied
to each time window and the final prediction is taken as
the mean value of those, in an effort to average out the
stochasticity that arises from signal cropping.
Architecture. The overall architecture is composed of an
ensemble of NNs, where each NN is separately respon-
sible for embedding each specific channel into a lower-
dimensional vector space, i.e. the feature space, then
merged together and fed through a Siamese architecture
[11]. For most of the channels (that is, EEG, EOG, EMG
and airflow channels) the embedding is obtained by pro-
cessing the inputs with a CNN model, whose architecture
is described in Table 1. This is a 6 layers one-dimensional
CNN architecture, where we use Parametric ReLU nodes
as activation functions [12], with three fully-connected
layers stacked on top (of 256, 128 and 128 units each).
On the other hand, the SaO2 signal is processed by means
of only four fully-connected layers (of 512, 256, 64 and
64 units each). The rationale for this is that the latter did
not benefit from feature embedding, as it seems mostly to
be a baseline type of signal. Feature vectors obtained for
each input signal are then concatenated together into a sin-
gle overall feature vector. We build a shared-parameter
Siamese NN on top of the latter, in order to achieve effec-
tive user-specific feature calibration [13]. This is done by
making exact copies of the NNs described above, and ap-
plying them to specific templates extracted for each user.
We empirically find good performance by selecting two
templates for each user (see Section 3), and randomly
looking at input samples close in time to that currently un-
der analysis.

Finally, three fully-connected layers (of 1024, 512 and
256 units each) merge together the calibrated features in a
non-linear fashion and provide the final prediction on the
arousal level through a final soft-max activation function.
Implementation and Training. We train the overall NN

architecture end-to-end relying on the Adam optimiser
[14]. Training is performed for a maximum of 50 epochs,
and we use early-stopping if the AUPR (which is the rank-
ing score used in the challenge) on the validation set does
not improve for 10 consecutive epochs. We finally use the
model that obtained the best AUPR score on the validation
set, among those explored by the optimisation algorithm
throughout the learning process.

For the final entry we use 85% of the dataset for train-
ing and the rest for validation, while for cross-validation
results we use 80% for training, 10% for validation and
10% for testing. We implement the model in Keras [15]
using Tensorflow backend [16]1. Training is done on an
NVIDIA Tesla K80 GPU, with training time of about 22
hours.

3. Experimental Results

Table 2 lists a comparison of cross-validation results ob-
tained on the training set provided by the challenge organ-
isers. Namely, we compare single-modal classification re-
sults with multi-modal ones, and analyse how the AUPR is
affected by the number of Siamese copies of the network,
that is, 0-Siamese (i.e. standard non-Siamese architecture),
1-Siamese (i.e. standard Siamese architecture where two
copies of the same network exist) and 2-Siamese (i.e. a
variation on the standard Siamese network, in which we
consider 3 copies of the same network) networks. Because
of the challenge computation time constraints, we have
limited our analysis to 5 channels only, namely: (i) C3-M2
(central) EEG; (ii) E1-M2 EOG; (iii) Abdominal EMG;
(iv) Airflow; and (v) Oxygen Saturation level (SaO2). In
fact, the multi-modal model is trained only on these 5
channels. We leave for future work an investigation of how
to include the remaining channels into the proposed neural
network architecture.

We observe how increasing the number of Siamese
copies of the network generally increases the AUPR as
well. In fact, the increase is higher when comparing 0-
Siamese to 1-Siamese than when comparing 1-Siamese to
2-Siamese. Though the trend possibly persists when in-
creasing the number of Siamese copies to a number n > 2,
such an analysis was not considered for our challenge
submission. Notice how different sensors have different
first-order contributions to the final AUPR score. In fact,
the 2-Siamese network built using only Abdominal EMG
signal obtains already ≈ 84% of the AUPR obtained by
the multi-modal model; with Airflow being the second
most important channel and EEG the least relevant. These
scores, however, are relative to the particular architecture
employed and do not necessarily generalise to other archi-
tectures.

The final result that the 2-Siamese multi-modal network

1An implementation can be found at https://github.com/
andreapatane/SiameseNet-PhNet2018Challenge.
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C3-M2 E1-M2 ABD AIR SaO2 Multi
EEG EOG EMG Flow modal

0 0.09 0.16 0.29 0.25 0.15 0.34
1 0.13 0.20 0.35 0.27 0.20 0.40
2 0.16 0.22 0.38 0.27 0.23 0.45

Table 2. Average AUPR score for cross-validation re-
sults on single-modal and multi-modal arousal classifica-
tion. Different rows correspond to the number of Siamese
copies of the network.

obtains in the challenge test set is an AUPR of 0.40.

4. Discussion and Conclusions

In this work we have presented a neural network archi-
tecture for multi-modal sleep arousal detection. This was
built by training an ensemble of CNNs for feature space
embedding, and relying on a shared-parameter Siamese
architecture to effectively enable feature-level calibration.
While working directly on raw data for the other sen-
sor channels, for EEG processing we crucially relied on
frequency-based pre-processing of the signal, which al-
lowed us to take advantage of the relationship that exists
between the frequency shift of EEG and sleep arousal.

By means of cross-validation, we have empirically
shown the advantages of the Siamese architecture com-
pared to the standard one in the problem addressed here,
and evaluated first-order effects of how single sensors con-
tribute to the final model. The presented model obtains a
final AUPR score of 0.40 in the hidden test set of the Phy-
sionet/CinC Challenge 2018.

Future work will investigate the inclusion of the remain-
ing sensor channels into the network architecture, as well
as the development of CNNs specifically tailored for each
different sensor signal. Finally, empirical results suggest
that further improvements can potentially be obtained by
generalising the standard Siamese architecture and explor-
ing different strategies for template generation, which we
intend to study in future.
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