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Abstract

In this paper, we present our solution for early detection
of sepsis by joining the PhysioNet/Computing in Cardiol-
ogy Challenge 2019. Our proposed algorithm uses three
different models for sepsis prediction. The model takes
into account the amount of time the patients have already
spent in the intensive care unit. The first model uses 64
features and is applied if the patient stays in ICU for the
first 9 hours. Second and third models use 111 more ad-
vanced features. The second prediction model is activated
if the patient stays for more than 9 hours. The third one
is activated for more extended stays if the patient stays for
more than 60 hours. The time patients spent in the ICU
or were hospitalized is an essential indicator for the risk
of developing sepsis. During the longer stays in hospi-
tal number of intravenous measurements and other pro-
cedures increases, increasing the risk of blood infection.
Therefore, feature extraction in our algorithm was based
on these metrics. The best-received score with the mod-
els, trained using Gentle Boosting on a training set with
ADASYN balancing was lower than the best score with the
models, trained on a dataset with randomly removed sam-
ples. The official our team VGTU utility score on full test
set was 0.014 and ranked at 66 place.

1. Introduction

Sepsis is a syndrome of physiologic, pathologic, and
biochemical abnormalities induced by infection [1]. The
conservative estimates indicate that sepsis is a leading
cause of mortality and critical illness worldwide [2, 3].
World Health Organization concerned that sepsis contin-
ues to cause approximately six million deaths worldwide
every year, most of which are preventable [4, 5]. In their
study the Department of Health in Ireland reported that
survival from sepsis-induced hypotension is over 75% if
it is recognized promptly, but that every delay by an hour
causes that figure to fall by over 7%, implying that the mor-
tality increases by about 30% [6].

In this paper, we present our solution for early detection
of sepsis by joining the PhysioNet/Computing in Cardiol-
ogy Challenge 2019 [7]. The participants were challenged

to predict sepsis six hours before the clinical prediction.
The sepsis in this challenge was defined according to the
Sepsis-3 guidelines: a two-point change in the patient’s
Sequential Organ Failure Assessment (SOFA) score and
clinical suspicion of infection (as defined by the ordering
of blood cultures or IV antibiotics) [1]. Our open-source
algorithm works on clinical data provided on a real-time
basis by giving a positive or negative prediction of sepsis
for every single hour.

Data used in the competition was sourced from ICU pa-
tients in three separate hospital systems. Data from two
hospital systems were publicly available and was used to
create and test our algorithm. Data includes eight vital
signs up to 26 laboratory values, information about the
age, gender, hours between hospital admit and ICU admit,
hours since ICU admit.

Our proposed algorithm was scored on a censored data
set, dedicated for scoring and using utility function that
rewards early predictions and penalizes late predictions as
well as false alarms.

In the absence of clearly defined and highly accurate di-
agnostic tools, the ICU physicians rely on their own clin-
ical skill set and experience to diagnose sepsis. The ex-
perience among clinical features also includes prediction
of the possible source of infection [8]. It is common for
some sepsis patients to have variations of temperature dur-
ing four or six-hour period, which may become higher than
38 or lower than 36. High temperatures may be followed
by the sudden arterial blood pressure drop. The risk of
sepsis also is related to the time spent in ICU. Also, each
intervention increases this risk.

According to the labels in the public datasets, the sep-
sis for the ICU patients may be developed during several
hours after admission to ICU or much later. Taking into
account that the risk of sepsis development increases with
time spent in ICU, we decided to treat vital signs, labora-
tory values, and other clinical data differently for different
length of stay in ICU.

In the following sections we describe data preparation
techniques we have applied before feature extraction. Then
we explain which indicators we used to extract features.
Next we present classifiers which we have tested together
with disscussion on the received investigation results.
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2. Materials and Methods

The sepsis prediction algorithm we present in this paper
is based on the selection of the different set of features ac-
cording to the time spent in ICU. The duration of the first
period is selected for up to 9 hours. A specific set of fea-
tures and classifier is applied during this first period. An-
other classifier uses the features dedicated for the second
period if the duration of stay in ICU is 10 hours or more,
but less than 61 (approximately two and a half-day). If the
patient stays in the ICU for 61 hours or more, we introduce
the third classifier and dedicated features.

2.1. Data Preparation

To develop our algorithm and to train models we have
used the initial dataset of around 5000 records which was
available after the PhysioNet/Computing in Cardiology
Challenge 2019 was initiated and both training sets: train-
ing set A (20,336 subjects) and B (20,000 subjects). Each
dataset contains several measurements for each patient and
a sepsis label.

The training datasets contains highly unbalanced data.
Only 7.08% (3211 from 45336) records were from patients
with sepsis confirmed. Such situation required specific ap-
proach in order to train a classifier on this data. In order
to balance the data, we have used Adaptive synthetic sam-
pling (ADASYN) algorithm [9].

Taking into account the fact that the models in our al-
gorithm should work on a real-time basis, we have dupli-
cated dataset entries to create an input-output mapping on
an hourly basis. Measurements made at the first hour were
used with the labeled situation at that hour. Next, these
measurements were added to those which were made dur-
ing the next hour and used as a separate entry with the sit-
uation label (desired output), market after two hours. Such
duplication for a patient, who spent in ICU 30 hours gives
30 entries in total for the dataset, prepared to train models
of our algorithm.

Our algorithm, proposed in this paper, used three differ-
ently trained models. Prepared for model training entries
were divided into three subsets. The first subset was with
entries from 1 hour to 9 hours spent in ICU. For the patients
who spent in ICU for more than 9 hours, we took records
from the first 9 hours, spent in ICU. The second subset
was with entries from 10 to 60 hours spent in ICU. The
third subset included entries with duration over 61 hours
spent in ICU. To make things easier, we called these sub-
sets short, medium, and long.

2.2. Feature Extraction for Short Stay Pe-
riod

Making sepsis prediction on a short subset differs a little
bit compared to the subsets which represent longer stays in
the ICU. Several measurements do not give a possibility to
rely on features with advanced estimation. Therefore, we
have used simple tools, such as mean, median, entropy,
standard error, age, and hours between hospital admit and
ICU admit.

The feature vector of 64 elements was used as an input
to the model, trained on a short dataset and used for pre-
diction if the patient is in the ICU for a period not longer
than 9 hours. First 34 elements in the feature vector are
the mean values, calculated from the first 34 types of mea-
surements in the data file. It includes all eight vital signs
and laboratory values if present. It is essential to notice
that the mean value is calculated, not taking into account
NaN values (missing records) in the patient’s data file. If
during the analyzed period, there were no measurements
of a specific type, we put 0 in the feature vector.

The second 7 elements in the feature vector are the me-
dian of the measurements in the data file, calculated for the
following vital signs: HR Heart rate (beats per minute),
O2Sat Pulse oximetry (%), Temp Temperature (Deg C),
SBP Systolic BP (mm Hg), MAP Mean arterial pressure
(mm Hg), DBP Diastolic BP (mm Hg), Resp Respiration
rate (breaths per minute). For these vital signs, we have
also calculated other features: the Shannon entropy, stored
from 69 to 75 in the feature vector; the kurtosis, stored as
the following seven values in the feature vector; and stan-
dard error. The last two elements in the feature vector are
the age of the patient and the hours between hospital admit
and ICU admit.

2.3. Feature Extraction for Medium and
Long Stay Periods

For the medium and the long subsets, we used a vector
with 111 elements as an input to the models, trained for
each subset individually. However, the feature selection
was a bit more complicated, than in the case with short
data subset.

First difference with the features, used for short data
subset is that not all measurements were used to calcu-
late features for the model. Using statistical analysis of
variance (ANOVA), we selected only the following record
types: HR, Temp, SBP, DBP, Resp, EtCO2, Calcium, Lac-
tate, and Hct. For these nine types of measurements, we
have calculated: mean value, Shannon entropy, kurtosis,
standard error. These features were used as the first 36
elements in the feature vector. We also added the age of
the patient and the hours between hospital admit and ICU
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admit as 37th and 38th feature respectively.
Second, to calculate the 39th feature, we selected a set

of measurements, which usually (more frequently) were
taken separately: FiO2, pH, PaCO2, SaO2, Calcium, Glu-
cose, Lactate. This set was used to calculate a specific
feature for a model. To calculate this feature, we took the
number of measurements for each measurement type and
divided it by the total length of stay in ICU. As a feature,
we took an average of these seven resulting values.

Selected nine types of measurements also were used
to calculate an additional set of features, which, accord-
ing to our idea, should describe the current situation of
the patient. We have selected 7 hour duration time frame
and calculated the following features: standard deviation,
mean, difference between last value and the maximum
value, which accrued during selected time frame, differ-
ence between maximum and minimum values, difference
between last two measurements, standard deviation of dif-
ferences between measurements, maximum difference be-
tween measurements over last 7 hours.

2.4. Classification

In order to speed-up the training of the models, we ap-
plied input data standardization. The mean and standard
deviation coefficients were estimated using the measure-
ments taken from the whole training dataset. Those es-
timated coefficients are now included in our algorithm as
constant values.

For our algorithm, presented in this paper, we have used
three trained models. All models were based on decision
tree classifier, trained using Gentle Adaptive Boosting en-
semble learning algorithm [10]. Also, we have trained
the models of our algorithm using Random undersampling
boosting [11].

3. Results

There were two types of models trained and tested on
a training dataset: models based on Gentle Boosting [10]
and models based on RUS boosting [11]. The final algo-
rithm uses the same type of the model for all three subsets:
short, medium, and long.

Three models of the algorithm, used in the algorithm
version named GBMod1, were trained on the unbalanced
dataset, where the number of examples with sepsis situa-
tions was only 1% comparing to 99% of situations when
sepsis should not be predicted (indicated). The models
were based on Gentle Boosting Ensemble method.

The models used in algorithm GBMod2 also used Gen-
tle Boosting Ensemble method, but a significant amount
of non-sepsis situations were randomly removed from the
training data. The resulting training dataset had 20% of
sepsis labeled situations and 80% of non-sepsis situations.

Such approach for training showed the best results and
achieved official utility score on full test set of 0.014. Util-
ity score on test set A, B and C was respectively 0.036,
0.013, -0.078.

GBMod3 and GBMod4 types models were trained on
a balanced training dataset. The balancing was made us-
ing ADASYN algorithm. Difference between these types
of modes is that GBMod3 model for medium subset was
trained using a Maximum number of splits equal to 30 and
GBMod4 model for the same subset was trained using a
Maximum number of splits equal to 75. Models with a
higher number of splits performed better.

RBMod1 is an alternative type of classification model.
Models of this type are based on RUS Boosting algorithm
and were trained on balanced training data. We also set the
maximum number of splits to 75.

4. Conclusions

Our approach, presented in this paper, was created using
the traditional way by trying to find and select a set of fea-
tures, which can give the best classification performance.

We have selected Decision tree classifiers working on
64 or 111 features, depending on how long the patient al-
ready stays in ICU. Training of the models using ensemble
methods showed that enabled PCA reduces the number of
feature from 111 to 65. However, the accuracy decreases
by almost 8%.

Balancing the dataset using ADASYN did not show
better results compared to the random selection of fewer
members from the class with a higher number of elements
for training. The best-received score with the models,
trained using Gentle Boosting on an initial training set with
ADASYN balancing was lower then the best score with the
models, trained on a dataset with randomly removed sam-
ples – 0.014.

Utility score on full test set was 0.014. Utility score on
test set A was 0.036, on test set B – 0.013, test set C –
-0.078. Team VGTU was ranked 66 in the official Chal-
lenge. Team members were Artūras Serackis and Vytautas
Abromavičius.
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